“PEDRO DOMINGOS DEMYSTIFIES MACHINE LEARNING AND SHOWS HOW WONDROUS
AND EXCITING THE FUTURE WILL BE.” —WALTER ISAACSON

T T
A g gy g
I

B I A i B e el T
G e g e Pt gy
. v g =

HOW THE QUEST FOR
THE ULTIMATE
LEARNING MACHINE WILL
REMAKE OUR WORLD

More Advance Praise for The Master Algorithm

“This is an incredibly important and useful book. Machine learning is already
critical to your life and work, and will only become more so. Finally, Pedro
Domingos has written about it in a clear and understandable fashion.”

—THOMAS H. DAVENPORT, distinguished professor, Babson College, and
author of Competing on Analytics and Big Data at Work

“Machine learning, known in commercial use as predictive analytics, is changing
the world. This riveting, far-reaching, and inspiring book introduces the deep
scientific concepts to even non-technical readers, and yet also satisfies experts
with a fresh, profound perspective that reveals the most promising research
directions. It’s a rare gem indeed.”

—ERIC SIEGEL, founder, Predictive Analytics World, and author of
Predictive Analytics

“Machine learning is a fascinating world never before glimpsed by outsiders.
Pedro Domingos initiates you to the mysterious languages spoken by its five
tribes, and invites you to join in his plan to unite them, creating the most
powerful technology our civilization has ever seen.”

—SEBASTIAN SEUNG, professor, Princeton, and author of Connectome

“[An] enthusiastic but not dumbed-down introduction to machine learning . . .
lucid and consistently informative. . . . With wit, vision, and scholarship,
Domingos describes how these scientists are creating programs that allow a
computer to teach itself. Readers . . . will discover fascinating insights.”

—Kirkus Reviews

The Master Algorithm

..

How the Quest for the Ultimate Learning
Machine Will Remake Our World

Pedro Domingos

BASIC BOOKS

A Member of the Perseus Books Group
New York

Copyright © 2015 by Pedro Domingos
Published by Basic Books,
A Member of the Perseus Books Group

All rights reserved. Printed in the United States of America. No part of this book may be reproduced in any
manner whatsoever without written permission except in the case of brief quotations embodied in critical

articles and reviews. For information, address Basic Books, 250 West 57th Street, New York, NY 10107.

Books published by Basic Books are available at special discounts for bulk purchases in the United States
by corporations, institutions, and other organizations. For more information, please contact the Special
Markets Department at the Perseus Books Group, 2300 Chestnut Street, Suite 200, Philadelphia, PA 19103,
or call (800) 810-4145, ext. 5000, or e-mail special.markets@perseusbooks.com.

Library of Congress Cataloging-in-Publication Data
Domingos, Pedro.

The master algorithm: how the quest for the ultimate learning machine will remake our world / Pedro
Domingos.

pages cm

Includes index.
ISBN 978-0-465-06192-1 (ebook) 1. Knowledge representation (Information theory) 2. Artificial
intelligence—Social aspects. 3. Artificial intelligence—Philosophy. 4. Cognitive science—Mathematics. 5.
Algorithms. I. Title.

Q387.D66 2015
003'54—dc23

2015007615
10987654321

mailto:special.markets@perseusbooks.com

TO THE MEMORY OF MY SISTER RITA, WHO LOST HER BATTLE
WITH CANCER WHILE I WAS WRITING THIS BOOK

The grand aim of science is to cover the greatest number of
experimental facts by logical deduction from the smallest number of
hypotheses or axioms.

—Albert Einstein

Civilization advances by extending the number of important operations
we can perform without thinking about them.

—Alfred North Whitehead

Contents

Prologue

Chapter 1 The Machine-Learning Revolution
Chapter 2 The Master Algorithm

Chapter 3 Hume’s Problem of Induction

Chapter 4 How Does Your Brain Learn?

Chapter 5 Evolution: Nature’s Learning Algorithm
Chapter 6 In the Church of the Reverend Bayes
Chapter 7 You Are What You Resemble

Chapter 8 Learning Without a Teacher

Chapter 9 The Pieces of the Puzzle Fall into Place
Chapter 10 This Is the World on Machine Learning
Epilogue

Acknowledgments
Further Readings

Index

Prologue

You may not know it, but machine learning is all around you. When you type a
query into a search engine, it’s how the engine figures out which results to show
you (and which ads, as well). When you read your e-mail, you don’t see most of
the spam, because machine learning filtered it out. Go to Amazon.com to buy a
book or Netflix to watch a video, and a machine-learning system helpfully
recommends some you might like. Facebook uses machine learning to decide
which updates to show you, and Twitter does the same for tweets. Whenever you
use a computer, chances are machine learning is involved somewhere.

Traditionally, the only way to get a computer to do something—from adding
two numbers to flying an airplane—was to write down an algorithm explaining
how, in painstaking detail. But machine-learning algorithms, also known as
learners, are different: they figure it out on their own, by making inferences from
data. And the more data they have, the better they get. Now we don’t have to
program computers; they program themselves.

It’s not just in cyberspace, either: your whole day, from the moment you
wake up to the moment you fall asleep, is suffused with machine learning.

Your clock radio goes off at 7:00 a.m. It’s playing a song you haven’t heard
before, but you really like it. Courtesy of Pandora, it’s been learning your tastes
in music, like your own personal radio jock. Perhaps the song itself was
produced with the help of machine learning. You eat breakfast and read the
morning paper. It came off the printing press a few hours earlier, the printing
process carefully adjusted to avoid streaking using a learning algorithm. The
temperature in your house is just right, and your electricity bill noticeably down,
since you installed a Nest learning thermostat.

http://Amazon.com

As you drive to work, your car continually adjusts fuel injection and exhaust
recirculation to get the best gas mileage. You use Inrix, a traffic prediction
system, to shorten your rush-hour commute, not to mention lowering your stress
level. At work, machine learning helps you combat information overload. You
use a data cube to summarize masses of data, look at it from every angle, and
drill down on the most important bits. You have a decision to make: Will layout
A or B bring more business to your website? A web-learning system tries both
out and reports back. You need to check out a potential supplier’s website, but
it’s in a foreign language. No problem: Google automatically translates it for
you. Your e-mail conveniently sorts itself into folders, leaving only the most
important messages in the inbox. Your word processor checks your grammar and
spelling. You find a flight for an upcoming trip, but hold off on buying the ticket
because Bing Travel predicts its price will go down soon. Without realizing it,
you accomplish a lot more, hour by hour, than you would without the help of
machine learning.

During a break you check on your mutual funds. Most of them use learning
algorithms to help pick stocks, and one of them is completely run by a learning
system. At lunchtime you walk down the street, smart phone in hand, looking for
a place to eat. Yelp’s learning system helps you find it. Your cell phone is
chock-full of learning algorithms. They’re hard at work correcting your typos,
understanding your spoken commands, reducing transmission errors,
recognizing bar codes, and much else. Your phone can even anticipate what
you’re going to do next and advise you accordingly. For example, as you’re
finishing lunch, it discreetly alerts you that your afternoon meeting with an out-
of-town visitor will have to start late because her flight has been delayed.

Night has fallen by the time you get off work. Machine learning helps keep
you safe as you walk to your car, monitoring the video feed from the
surveillance camera in the parking lot and alerting off-site security staff if it
detects suspicious activity. On your way home, you stop at the supermarket,
where you walk down aisles that were laid out with the help of learning
algorithms: which goods to stock, which end-of-aisle displays to set up, whether
to put the salsa in the sauce section or next to the tortilla chips. You pay with a
credit card. A learning algorithm decided to send you the offer for that card and
approved your application. Another one continually looks for suspicious
transactions and alerts you if it thinks your card number was stolen. A third one
tries to estimate how happy you are with this card. If you’re a good customer but
seem dissatisfied, you get a sweetened offer before you switch to another one.

You get home and walk to the mailbox. You have a letter from a friend,
routed to you by a learning algorithm that can read handwritten addresses.
There’s also the usual junk, selected for you by other learning algorithms (oh,
well). You stop for a moment to take in the cool night air. Crime in your city is
noticeably down since the police started using statistical learning to predict
where crimes are most likely to occur and concentrating beat officers there. You
eat dinner with your family. The mayor is in the news. You voted for him
because he personally called you on election day, after a learning algorithm
pinpointed you as a key undecided voter. After dinner, you watch the ball game.
Both teams selected their players with the help of statistical learning. Or perhaps
you play games on your Xbox with your kids, and Kinect’s learning algorithm
figures out where you are and what you’re doing. Before going to sleep, you take
your medicine, which was designed and tested with the help of yet more learning
algorithms. Your doctor, too, may have used machine learning to help diagnose
you, from interpreting X-rays to figuring out an unusual set of symptoms.

Machine learning plays a part in every stage of your life. If you studied
online for the SAT college admission exam, a learning algorithm graded your
practice essays. And if you applied to business school and took the GMAT exam
recently, one of your essay graders was a learning system. Perhaps when you
applied for your job, a learning algorithm picked your résumé from the virtual
pile and told your prospective employer: here’s a strong candidate; take a look.
Your latest raise may have come courtesy of another learning algorithm. If
you’re looking to buy a house, Zillow.com will estimate what each one you’re
considering is worth. When you’ve settled on one, you apply for a home loan,
and a learning algorithm studies your application and recommends accepting it
(or not). Perhaps most important, if you’ve used an online dating service,
machine learning may even have helped you find the love of your life.

Society is changing, one learning algorithm at a time. Machine learning is
remaking science, technology, business, politics, and war. Satellites, DNA
sequencers, and particle accelerators probe nature in ever-finer detail, and
learning algorithms turn the torrents of data into new scientific knowledge.
Companies know their customers like never before. The candidate with the best
voter models wins, like Obama against Romney. Unmanned vehicles pilot
themselves across land, sea, and air. No one programmed your tastes into the
Amazon recommendation system; a learning algorithm figured them out on its
own, by generalizing from your past purchases. Google’s self-driving car taught
itself how to stay on the road; no engineer wrote an algorithm instructing it, step-

http://Zillow.com

by-step, how to get from A to B. No one knows how to program a car to drive,
and no one needs to, because a car equipped with a learning algorithm picks it up
by observing what the driver does.

Machine learning is something new under the sun: a technology that builds
itself. Ever since our remote ancestors started sharpening stones into tools,
humans have been designing artifacts, whether they’re hand built or mass
produced. But learning algorithms are artifacts that design other artifacts.
“Computers are useless,” said Picasso. “They can only give you answers.”
Computers aren’t supposed to be creative; they’re supposed to do what you tell
them to. If what you tell them to do is be creative, you get machine learning. A
learning algorithm is like a master craftsman: every one of its productions is
different and exquisitely tailored to the customer’s needs. But instead of turning
stone into masonry or gold into jewelry, learners turn data into algorithms. And
the more data they have, the more intricate the algorithms can be.

Homo sapiens is the species that adapts the world to itself instead of adapting
itself to the world. Machine learning is the newest chapter in this million-year
saga: with it, the world senses what you want and changes accordingly, without
you having to lift a finger. Like a magic forest, your surroundings—virtual
today, physical tomorrow—rearrange themselves as you move through them.
The path you picked out between the trees and bushes grows into a road. Signs
pointing the way spring up in the places where you got lost.

These seemingly magical technologies work because, at its core, machine
learning is about prediction: predicting what we want, the results of our actions,
how to achieve our goals, how the world will change. Once upon a time we
relied on shamans and soothsayers for this, but they were much too fallible.
Science’s predictions are more trustworthy, but they are limited to what we can
systematically observe and tractably model. Big data and machine learning
greatly expand that scope. Some everyday things can be predicted by the
unaided mind, from catching a ball to carrying on a conversation. Some things,
try as we might, are just unpredictable. For the vast middle ground between the
two, there’s machine learning.

Paradoxically, even as they open new windows on nature and human
behavior, learning algorithms themselves have remained shrouded in mystery.
Hardly a day goes by without a story in the media involving machine learning,
whether it’s Apple’s launch of the Siri personal assistant, IBM’s Watson beating
the human Jeopardy! champion, Target finding out a teenager is pregnant before
her parents do, or the NSA looking for dots to connect. But in each case the

learning algorithm driving the story is a black box. Even books on big data skirt
around what really happens when the computer swallows all those terabytes and
magically comes up with new insights. At best, we’re left with the impression
that learning algorithms just find correlations between pairs of events, such as
googling “flu medicine” and having the flu. But finding correlations is to
machine learning no more than bricks are to houses, and people don’t live in
bricks.

When a new technology is as pervasive and game changing as machine
learning, it’s not wise to let it remain a black box. Opacity opens the door to
error and misuse. Amazon’s algorithm, more than any one person, determines
what books are read in the world today. The NSA’s algorithms decide whether
you’re a potential terrorist. Climate models decide what’s a safe level of carbon
dioxide in the atmosphere. Stock-picking models drive the economy more than
most of us do. You can’t control what you don’t understand, and that’s why you
need to understand machine learning—as a citizen, a professional, and a human
being engaged in the pursuit of happiness.

This book’s first goal is to let you in on the secrets of machine learning. Only
engineers and mechanics need to know how a car’s engine works, but every
driver needs to know that turning the steering wheel changes the car’s direction
and stepping on the brake brings it to a stop. Few people today know what the
corresponding elements of a learner even are, let alone how to use them. The
psychologist Don Norman coined the term conceptual model to refer to the
rough knowledge of a technology we need to have in order to use it effectively.
This book provides you with a conceptual model of machine learning.

Not all learning algorithms work the same, and the differences have
consequences. Take Amazon’s and Netflix’s recommenders, for example. If
each were guiding you through a physical bookstore, trying to determine what’s
“right for you,” Amazon would be more likely to walk you over to shelves
you’ve frequented previously; Netflix would take you to unfamiliar and
seemingly odd sections of the store but lead you to stuff you’d end up loving. In
this book we’ll see the different kinds of algorithms that companies like Amazon
and Netflix use. Netflix’s algorithm has a deeper (even if still quite limited)
understanding of your tastes than Amazon’s, but ironically that doesn’t mean
Amazon would be better off using it. Netflix’s business model depends on
driving demand into the long tail of obscure movies and TV shows, which cost it
little, and away from the blockbusters, which your subscription isn’t enough to
pay for. Amazon has no such problem; although it’s well placed to take

advantage of the long tail, it’s equally happy to sell you more expensive popular
items, which also simplify its logistics. And we, as customers, are more willing
to take a chance on an odd item if we have a subscription than if we have to pay
for it separately.

Hundreds of new learning algorithms are invented every year, but they’re all
based on the same few basic ideas. These are what this book is about, and
they’re all you really need to know to understand how machine learning is
changing the world. Far from esoteric, and quite aside even from their use in
computers, they are answers to questions that matter to all of us: How do we
learn? Is there a better way? What can we predict? Can we trust what we’ve
learned? Rival schools of thought within machine learning have very different
answers to these questions. The main ones are five in number, and we’ll devote a
chapter to each. Symbolists view learning as the inverse of deduction and take
ideas from philosophy, psychology, and logic. Connectionists reverse engineer
the brain and are inspired by neuroscience and physics. Evolutionaries simulate
evolution on the computer and draw on genetics and evolutionary biology.
Bayesians believe learning is a form of probabilistic inference and have their
roots in statistics. Analogizers learn by extrapolating from similarity judgments
and are influenced by psychology and mathematical optimization. Driven by the
goal of building learning machines, we’ll tour a good chunk of the intellectual
history of the last hundred years and see it in a new light.

Each of the five tribes of machine learning has its own master algorithm, a
general-purpose learner that you can in principle use to discover knowledge
from data in any domain. The symbolists’ master algorithm is inverse deduction,
the connectionists’ is backpropagation, the evolutionaries’ is genetic
programming, the Bayesians’ is Bayesian inference, and the analogizers’ is the
support vector machine. In practice, however, each of these algorithms is good
for some things but not others. What we really want is a single algorithm
combining the key features of all of them: the ultimate master algorithm. For
some this is an unattainable dream, but for many of us in machine learning, it’s
what puts a twinkle in our eye and keeps us working late into the night.

If it exists, the Master Algorithm can derive all knowledge in the world—
past, present, and future—from data. Inventing it would be one of the greatest
advances in the history of science. It would speed up the progress of knowledge
across the board, and change the world in ways that we can barely begin to
imagine. The Master Algorithm is to machine learning what the Standard Model
is to particle physics or the Central Dogma to molecular biology: a unified

theory that makes sense of everything we know to date, and lays the foundation
for decades or centuries of future progress. The Master Algorithm is our gateway
to solving some of the hardest problems we face, from building domestic robots
to curing cancer.

Take cancer. Curing it is hard because cancer is not one disease, but many.
Tumors can be triggered by a dizzying array of causes, and they mutate as they
metastasize. The surest way to kill a tumor is to sequence its genome, figure out
which drugs will work against it—without harming you, given your genome and
medical history—and perhaps even design a new drug specifically for your case.
No doctor can master all the knowledge required for this. Sounds like a perfect
job for machine learning: in effect, it’s a more complicated and challenging
version of the searches that Amazon and Netflix do every day, except it’s
looking for the right treatment for you instead of the right book or movie.
Unfortunately, while today’s learning algorithms can diagnose many diseases
with superhuman accuracy, curing cancer is well beyond their ken. If we succeed
in our quest for the Master Algorithm, it will no longer be.

The second goal of this book is thus to enable you to invent the Master
Algorithm. You’d think this would require heavy-duty mathematics and severe
theoretical work. On the contrary, what it requires is stepping back from the
mathematical arcana to see the overarching pattern of learning phenomena; and
for this the layman, approaching the forest from a distance, is in some ways
better placed than the specialist, already deeply immersed in the study of
particular trees. Once we have the conceptual solution, we can fill in the
mathematical details; but that is not for this book, and not the most important
part. Thus, as we visit each tribe, our goal is to gather its piece of the puzzle and
understand where it fits, mindful that none of the blind men can see the whole
elephant. In particular, we’ll see what each tribe can contribute to curing cancer,
and also what it’s missing. Then, step-by-step, we’ll assemble all the pieces into
the solution—or rather, a solution that is not yet the Master Algorithm, but is the
closest anyone has come, and hopefully makes a good launch pad for your
imagination. And we’ll preview the use of this algorithm as a weapon in the
fight against cancer. As you read the book, feel free to skim or skip any parts
you find troublesome; it’s the big picture that matters, and you’ll probably get
more out of those parts if you revisit them after the puzzle is assembled.

I’ve been a machine-learning researcher for more than twenty years. My
interest in it was sparked by a book with an odd title I saw in a bookstore when I
was a senior in college: Artificial Intelligence. It had only a short chapter on

machine learning, but on reading it, I immediately became convinced that
learning was the key to solving AI and that the state of the art was so primitive
that maybe I could contribute something. Shelving plans for an MBA, I entered
the PhD program at the University of California, Irvine. Machine learning was
then a small, obscure field, and UCI had one of the few sizable research groups
anywhere. Some of my classmates dropped out because they didn’t see much of
a future in it, but I persisted. To me nothing could have more impact than
teaching computers to learn: if we could do that, we would get a leg up on every
other problem. By the time I graduated five years later, the data-mining
explosion was under way, and so was my path to this book. My doctoral
dissertation unified symbolic and analogical learning. I’ve spent much of the last
ten years unifying symbolism and Bayesianism, and more recently those two
with connectionism. It’s time to go the next step and attempt a synthesis of all
five paradigms.

I had a number of different but overlapping audiences in mind when writing this
book.

If you’re curious what all the hubbub surrounding big data and machine
learning is about and suspect that there’s something deeper going on than what
you see in the papers, you’re right! This book is your guide to the revolution.

If your main interest is in the business uses of machine learning, this book
can help you in at least six ways: to become a savvier consumer of analytics; to
make the most of your data scientists; to avoid the pitfalls that kill so many data-
mining projects; to discover what you can automate without the expense of
hand-coded software; to reduce the rigidity of your information systems; and to
anticipate some of the new technology that’s coming your way. I’ve seen too
much time and money wasted trying to solve a problem with the wrong learning
algorithm, or misinterpreting what the algorithm said. It doesn’t take much to
avoid these fiascoes. In fact, all it takes is to read this book.

If you’re a citizen or policy maker concerned with the social and political
issues raised by big data and machine learning, this book will give you a primer
on the technology—what it is, where it’s taking us, what it does and doesn’t
make possible—without boring you with all the ins and outs. From privacy to
the future of work and the ethics of roboticized warfare, we’ll see where the real
issues are and how to think about them.

If you’re a scientist or engineer, machine learning is a powerful armory that
you don’t want to be without. The old, tried-and-true statistical tools don’t get

you far in the age of big (or even medium) data. You need machine learning’s
nonlinear chops to accurately model most phenomena, and it brings with it a new
scientific worldview. The expression paradigm shift is used too casually these
days, but I believe it’s not an exaggeration to say that that’s what this book
describes.

If you’re a machine-learning expert, you’re already familiar with much of
what the book covers, but you’ll also find in it many fresh ideas, historical
nuggets, and useful examples and analogies. Most of all, I hope the book will
provide a new perspective on machine learning and maybe even start you
thinking in new directions. Low-hanging fruit is all around us, and it behooves
us to pick it, but we also shouldn’t lose sight of the bigger rewards that lie just
beyond. (Apropos of which, I hope you’ll forgive my poetic license in using the
term master algorithm to refer to a general-purpose learner.)

If you’re a student of any age—a high schooler wondering what to major in,
a college undergraduate deciding whether to go into research, or a seasoned
professional considering a career change—my hope is that this book will spark
in you an interest in this fascinating field. The world has a dire shortage of
machine-learning experts, and if you decide to join us, you can look forward to
not only exciting times and material rewards but also a unique opportunity to
serve society. And if you’re already studying machine learning, I hope the book
will help you get the lay of the land; if in your travels you chance upon the
Master Algorithm, that alone makes it worth writing.

Last but not least, if you have an appetite for wonder, machine learning is an
intellectual feast, and you’re invited—RSVP!

CHAPTER ONE

fe

The Machine-Learning Revolution

We live in the age of algorithms. Only a generation or two ago, mentioning the
word algorithm would have drawn a blank from most people. Today, algorithms
are in every nook and cranny of civilization. They are woven into the fabric of
everyday life. They’re not just in your cell phone or your laptop but in your car,
your house, your appliances, and your toys. Your bank is a gigantic tangle of
algorithms, with humans turning the knobs here and there. Algorithms schedule
flights and then fly the airplanes. Algorithms run factories, trade and route
goods, cash the proceeds, and keep records. If every algorithm suddenly stopped
working, it would be the end of the world as we know it.

An algorithm is a sequence of instructions telling a computer what to do.
Computers are made of billions of tiny switches called transistors, and
algorithms turn those switches on and off billions of times per second. The
simplest algorithm is: flip a switch. The state of one transistor is one bit of
information: one if the transistor is on, and zero if it’s off. One bit somewhere in
your bank’s computers says whether your account is overdrawn or not. Another
bit somewhere in the Social Security Administration’s computers says whether
you’re alive or dead. The second simplest algorithm is: combine two bits. Claude
Shannon, better known as the father of information theory, was the first to
realize that what transistors are doing, as they switch on and off in response to
other transistors, is reasoning. (That was his master’s thesis at MIT—the most
important master’s thesis of all time.) If transistor A turns on only when
transistors B and C are both on, it’s doing a tiny piece of logical reasoning. If A

turns on when either B or C is on, that’s another tiny logical operation. And if A
turns on whenever B is off, and vice versa, that’s a third operation. Believe it or
not, every algorithm, no matter how complex, can be reduced to just these three
operations: AND, OR, and NOT. Simple algorithms can be represented by
diagrams, using different symbols for the AND, OR, and NOT operations. For
example, if a fever can be caused by influenza or malaria, and you should take
Tylenol for a fever and a headache, this can be expressed as follows:

Influenza

Tylenol

Malaria

Headache

By combining many such operations, we can carry out very elaborate chains of
logical reasoning. People often think computers are all about numbers, but
they’re not. Computers are all about logic. Numbers and arithmetic are made of
logic, and so is everything else in a computer. Want to add two numbers?
There’s a combination of transistors that does that. Want to beat the human
Jeopardy! champion? There’s a combination of transistors for that too (much
bigger, naturally).

It would be prohibitively expensive, though, if we had to build a new
computer for every different thing we want to do. Rather, a modern computer is
a vast assembly of transistors that can do many different things, depending on
which transistors are activated. Michelangelo said that all he did was see the
statue inside the block of marble and carve away the excess stone until the statue
was revealed. Likewise, an algorithm carves away the excess transistors in the
computer until the intended function is revealed, whether it’s an airliner’s
autopilot or a new Pixar movie.

An algorithm is not just any set of instructions: they have to be precise and
unambiguous enough to be executed by a computer. For example, a cooking
recipe is not an algorithm because it doesn’t exactly specify what order to do
things in or exactly what each step is. Exactly how much sugar is a spoonful? As
everyone who’s ever tried a new recipe knows, following it may result in
something delicious or a mess. In contrast, an algorithm always produces the
same result. Even if a recipe specifies precisely half an ounce of sugar, we’re
still not out of the woods because the computer doesn’t know what sugar is, or
an ounce. If we wanted to program a kitchen robot to make a cake, we would

have to tell it how to recognize sugar from video, how to pick up a spoon, and so
on. (We’re still working on that.) The computer has to know how to execute the
algorithm all the way down to turning specific transistors on and off. So a
cooking recipe is very far from an algorithm.

On the other hand, the following is an algorithm for playing tic-tac-toe:

If you or your opponent has two in a row, play on the remaining square.

Otherwise, if there’s a move that creates two lines of two in a row, play
that.

Otherwise, if the center square is free, play there.

Otherwise, if your opponent has played in a corner, play in the opposite
corner.

Otherwise, if there’s an empty corner, play there.

Otherwise, play on any empty square.

This algorithm has the nice property that it never loses! Of course, it’s still
missing many details, like how the board is represented in the computer’s
memory and how this representation is changed by a move. For example, we
could have two bits for each square, with the value 00 if the square is empty,
which changes to 01 if it has a naught and 10 if it has a cross. But it’s precise
and unambiguous enough that any competent programmer could fill in the
blanks. It also helps that we don’t really have to specify an algorithm ourselves
all the way down to individual transistors; we can use preexisting algorithms as
building blocks, and there’s a huge number of them to choose from.

Algorithms are an exacting standard. It’s often said that you don’t really
understand something until you can express it as an algorithm. (As Richard
Feynman said, “What I cannot create, I do not understand.”) Equations, the
bread and butter of physicists and engineers, are really just a special kind of
algorithm. For example, Newton’s second law, arguably the most important
equation of all time, tells you to compute the net force on an object by
multiplying its mass by its acceleration. It also tells you implicitly that the
acceleration is the force divided by the mass, but making that explicit is itself an
algorithmic step. In any area of science, if a theory cannot be expressed as an
algorithm, it’s not entirely rigorous. (Not to mention you can’t use a computer to
solve it, which really limits what you can do with it.) Scientists make theories,
and engineers make devices. Computer scientists make algorithms, which are
both theories and devices.

Designing an algorithm is not easy. Pitfalls abound, and nothing can be taken
for granted. Some of your intuitions will turn out to have been wrong, and you’ll
have to find another way. On top of designing the algorithm, you have to write it
down in a language computers can understand, like Java or Python (at which
point it’s called a program). Then you have to debug it: find every error and fix
it until the computer runs your program without screwing up. But once you have
a program that does what you want, you can really go to town. Computers will
do your bidding millions of times, at ultrahigh speed, without complaint.
Everyone in the world can use your creation. The cost can be zero, if you so
choose, or enough to make you a billionaire, if the problem you solved is
important enough. A programmer—someone who creates algorithms and codes
them up—is a minor god, creating universes at will. You could even say that the
God of Genesis himself is a programmer: language, not manipulation, is his tool
of creation. Words become worlds. Today, sitting on the couch with your laptop,
you too can be a god. Imagine a universe and make it real. The laws of physics
are optional.

Over time, computer scientists build on each other’s work and invent
algorithms for new things. Algorithms combine with other algorithms to use the
results of other algorithms, in turn producing results for still more algorithms.
Every second, billions of transistors in billions of computers switch billions of
times. Algorithms form a new kind of ecosystem—ever growing, comparable in
richness only to life itself.

Inevitably, however, there is a serpent in this Eden. It’s called the complexity
monster. Like the Hydra, the complexity monster has many heads. One of them
is space complexity: the number of bits of information an algorithm needs to
store in the computer’s memory. If the algorithm needs more memory than the
computer can provide, it’s useless and must be discarded. Then there’s the evil
sister, time complexity: how long the algorithm takes to run, that is, how many
steps of using and reusing the transistors it has to go through before it produces
the desired results. If it’s longer than we can wait, the algorithm is again useless.
But the scariest face of the complexity monster is human complexity. When
algorithms become too intricate for our poor human brains to understand, when
the interactions between different parts of the algorithm are too many and too
involved, errors creep in, we can’t find them and fix them, and the algorithm
doesn’t do what we want. Even if we somehow make it work, it winds up being
needlessly complicated for the people using it and doesn’t play well with other
algorithms, storing up trouble for later.

Every computer scientist does battle with the complexity monster every day.
When computer scientists lose the battle, complexity seeps into our lives.
You’ve probably noticed that many a battle has been lost. Nevertheless, we
continue to build our tower of algorithms, with greater and greater difficulty.
Each new generation of algorithms has to be built on top of the previous ones
and has to deal with their complexities in addition to its own. The tower grows
taller and taller, and it covers the whole world, but it’s also increasingly fragile,
like a house of cards waiting to collapse. One tiny error in an algorithm and a
billion-dollar rocket explodes, or the power goes out for millions. Algorithms
interact in unexpected ways, and the stock market crashes.

If programmers are minor gods, the complexity monster is the devil himself.
Little by little, it’s winning the war.

There has to be a better way.

Enter the learner

Every algorithm has an input and an output: the data goes into the computer, the
algorithm does what it will with it, and out comes the result. Machine learning
turns this around: in goes the data and the desired result and out comes the
algorithm that turns one into the other. Learning algorithms—also known as
learners—are algorithms that make other algorithms. With machine learning,
computers write their own programs, so we don’t have to.

Wow.

Computers write their own programs. Now that’s a powerful idea, maybe
even a little scary. If computers start to program themselves, how will we control
them? Turns out we can control them quite well, as we’ll see. A more immediate
objection is that perhaps this sounds too good to be true. Surely writing
algorithms requires intelligence, creativity, problem-solving chops—things that
computers just don’t have? How is machine learning distinguishable from
magic? Indeed, as of today people can write many programs that computers
can’t learn. But, more surprisingly, computers can learn programs that people
can’t write. We know how to drive cars and decipher handwriting, but these
skills are subconscious; we’re not able to explain to a computer how to do these
things. If we give a learner a sufficient number of examples of each, however, it
will happily figure out how to do them on its own, at which point we can turn it
loose. That’s how the post office reads zip codes, and that’s why self-driving

cars are on the way.

The power of machine learning is perhaps best explained by a low-tech
analogy: farming. In an industrial society, goods are made in factories, which
means that engineers have to figure out exactly how to assemble them from their
parts, how to make those parts, and so on—all the way to raw materials. It’s a lot
of work. Computers are the most complex goods ever invented, and designing
them, the factories that make them, and the programs that run on them is a ton of
work. But there’s another, much older way in which we can get some of the
things we need: by letting nature make them. In farming, we plant the seeds,
make sure they have enough water and nutrients, and reap the grown crops. Why
can’t technology be more like this? It can, and that’s the promise of machine
learning. Learning algorithms are the seeds, data is the soil, and the learned
programs are the grown plants. The machine-learning expert is like a farmer,
sowing the seeds, irrigating and fertilizing the soil, and keeping an eye on the
health of the crop but otherwise staying out of the way.

Once we look at machine learning this way, two things immediately jump
out. The first is that the more data we have, the more we can learn. No data?
Nothing to learn. Big data? Lots to learn. That’s why machine learning has been
turning up everywhere, driven by exponentially growing mountains of data. If
machine learning was something you bought in the supermarket, its carton
would say: “Just add data.”

The second thing is that machine learning is a sword with which to slay the
complexity monster. Given enough data, a learning program that’s only a few
hundred lines long can easily generate a program with millions of lines, and it
can do this again and again for different problems. The reduction in complexity
for the programmer is phenomenal. Of course, like the Hydra, the complexity
monster sprouts new heads as soon as we cut off the old ones, but they start off
smaller and take a while to grow, so we still get a big leg up.

We can think of machine learning as the inverse of programming, in the
same way that the square root is the inverse of the square, or integration is the
inverse of differentiation. Just as we can ask “What number squared gives 16?”
or “What is the function whose derivative is x + 1?” we can ask, “What is the
algorithm that produces this output?” We will soon see how to turn this insight
into concrete learning algorithms.

Some learners learn knowledge, and some learn skills. “All humans are
mortal” is a piece of knowledge. Riding a bicycle is a skill. In machine learning,
knowledge is often in the form of statistical models, because most knowledge is

statistical: all humans are mortal, but only 4 percent are Americans. Skills are
often in the form of procedures: if the road curves left, turn the wheel left; if a
deer jumps in front of you, slam on the brakes. (Unfortunately, as of this writing
Google’s self-driving cars still confuse windblown plastic bags with deer.)
Often, the procedures are quite simple, and it’s the knowledge at their core that’s
complex. If you can tell which e-mails are spam, you know which ones to delete.
If you can tell how good a board position in chess is, you know which move to
make (the one that leads to the best position).

Machine learning takes many different forms and goes by many different
names: pattern recognition, statistical modeling, data mining, knowledge
discovery, predictive analytics, data science, adaptive systems, self-organizing
systems, and more. Each of these is used by different communities and has
different associations. Some have a long half-life, some less so. In this book I
use the term machine learning to refer broadly to all of them.

Machine learning is sometimes confused with artificial intelligence (or Al
for short). Technically, machine learning is a subfield of Al, but it’s grown so
large and successful that it now eclipses its proud parent. The goal of Al is to
teach computers to do what humans currently do better, and learning is arguably
the most important of those things: without it, no computer can keep up with a
human for long; with it, the rest follows.

In the information-processing ecosystem, learners are the superpredators.
Databases, crawlers, indexers, and so on are the herbivores, patiently munging
on endless fields of data. Statistical algorithms, online analytical processing, and
so on are the predators. Herbivores are necessary, since without them the others
couldn’t exist, but superpredators have a more exciting life. A crawler is like a
cow, the web is its worldwide meadow, each page is a blade of grass. When the
crawler is done munging, a copy of the web is sitting on its hard disks. An
indexer then makes a list of the pages where each word appears, much like the
index at the end of a book. Databases, like elephants, are big and heavy and
never forget. Among these patient beasts dart statistical and analytical
algorithms, compacting and selecting, turning data into information. Learners eat
up this information, digest it, and turn it into knowledge.

Machine-learning experts (aka machine learners) are an elite priesthood even
among computer scientists. Many computer scientists, particularly those of an
older generation, don’t understand machine learning as well as they’d like to.
This is because computer science has traditionally been all about thinking
deterministically, but machine learning requires thinking statistically. If a rule

for, say, labeling e-mails as spam is 99 percent accurate, that does not mean it’s
buggy; it may be the best you can do and good enough to be useful. This
difference in thinking is a large part of why Microsoft has had a lot more trouble
catching up with Google than it did with Netscape. At the end of the day, a
browser is just a standard piece of software, but a search engine requires a
different mind-set.

The other reason machine learners are the {iber-geeks is that the world has
far fewer of them than it needs, even by the already dire standards of computer
science. According to tech guru Tim O’Reilly, “data scientist” is the hottest job
title in Silicon Valley. The McKinsey Global Institute estimates that by 2018 the
United States alone will need 140,000 to 190,000 more machine-learning experts
than will be available, and 1.5 million more data-savvy managers. Machine
learning’s applications have exploded too suddenly for education to keep up, and
it has a reputation for being a difficult subject. Textbooks are liable to give you
math indigestion. This difficulty is more apparent than real, however. All of the
important ideas in machine learning can be expressed math-free. As you read
this book, you may even find yourself inventing your own learning algorithms,
with nary an equation in sight.

The Industrial Revolution automated manual work and the Information
Revolution did the same for mental work, but machine learning automates
automation itself. Without it, programmers become the bottleneck holding up
progress. With it, the pace of progress picks up. If you’re a lazy and not-too-
bright computer scientist, machine learning is the ideal occupation, because
learning algorithms do all the work but let you take all the credit. On the other
hand, learning algorithms could put us out of our jobs, which would only be
poetic justice.

By taking automation to new heights, the machine-learning revolution will
cause extensive economic and social changes, just as the Internet, the personal
computer, the automobile, and the steam engine did in their time. One area
where these changes are already apparent is business.

Why businesses embrace machine learning
Why is Google worth so much more than Yahoo? They both make their money

from showing ads on the web, and they’re both top destinations. Both use
auctions to sell ads and machine learning to predict how likely a user is to click

on an ad (the higher the probability, the more valuable the ad). But Google’s
learning algorithms are much better than Yahoo’s. This is not the only reason for
the difference in their market caps, of course, but it’s a big one. Every predicted
click that doesn’t happen is a wasted opportunity for the advertiser and lost
revenue for the website. With Google’s annual revenue of $50 billion, every 1
percent improvement in click prediction potentially means another half billion
dollars in the bank, every year, for the company. No wonder Google is a big fan
of machine learning, and Yahoo and others are trying hard to catch up.

Web advertising is just one manifestation of a much larger phenomenon. In
every market, producers and consumers need to connect before a transaction can
happen. In pre-Internet days, the main obstacles to this were physical. You could
only buy books from your local bookstore, and your local bookstore had limited
shelf space. But when you can download any book to your e-reader any time, the
problem becomes the overwhelming number of choices. How do you browse the
shelves of a bookstore that has millions of titles for sale? The same goes for
other information goods: videos, music, news, tweets, blogs, plain old web
pages. It also goes for every product and service that can be procured remotely:
shoes, flowers, gadgets, hotel rooms, tutoring, investments. It even applies to
people looking for a job or a date. How do you find each other? This is the
defining problem of the Information Age, and machine learning is a big part of
the solution.

As companies grow, they go through three phases. First, they do everything
manually: the owners of a mom-and-pop store personally know their customers,
and they order, display, and recommend items accordingly. This is nice, but it
doesn’t scale. In the second and least happy phase, the company grows large
enough that it needs to use computers. In come the programmers, consultants,
and database managers, and millions of lines of code get written to automate all
the functions of the company that can be automated. Many more people are
served, but not as well: decisions are made based on coarse demographic
categories, and computer programs are too rigid to match humans’ infinite
versatility.

After a point, there just aren’t enough programmers and consultants to do all
that’s needed, and the company inevitably turns to machine learning. Amazon
can’t neatly encode the tastes of all its customers in a computer program, and
Facebook doesn’t know how to write a program that will choose the best updates
to show to each of its users. Walmart sells millions of products and has billions
of choices to make every day; if the programmers at Walmart tried to write a

program to make all of them, they would never be done. Instead, what these
companies do is turn learning algorithms loose on the mountains of data they’ve
accumulated and let them divine what customers want.

Learning algorithms are the matchmakers: they find producers and
consumers for each other, cutting through the information overload. If they’re
smart enough, you get the best of both worlds: the vast choice and low cost of
the large scale, with the personalized touch of the small. Learners are not perfect,
and the last step of the decision is usually still for humans to make, but learners
intelligently reduce the choices to something a human can manage.

In retrospect, we can see that the progression from computers to the Internet
to machine learning was inevitable: computers enable the Internet, which creates
a flood of data and the problem of limitless choice; and machine learning uses
the flood of data to help solve the limitless choice problem. The Internet by itself
is not enough to move demand from “one size fits all” to the long tail of infinite
variety. Netflix may have one hundred thousand DVD titles in stock, but if
customers don’t know how to find the ones they like, they will default to
choosing the hits. It’s only when Netflix has a learning algorithm to figure out
your tastes and recommend DVDs that the long tail really takes off.

Once the inevitable happens and learning algorithms become the middlemen,
power becomes concentrated in them. Google’s algorithms largely determine
what information you find, Amazon’s what products you buy, and Match.com’s
who you date. The last mile is still yours—choosing from among the options the
algorithms present you with—but 99.9 percent of the selection was done by
them. The success or failure of a company now depends on how much the
learners like its products, and the success of a whole economy—whether
everyone gets the best products for their needs at the best price—depends on
how good the learners are.

The best way for a company to ensure that learners like its products is to run
them itself. Whoever has the best algorithms and the most data wins. A new type
of network effect takes hold: whoever has the most customers accumulates the
most data, learns the best models, wins the most new customers, and so on in a
virtuous circle (or a vicious one, if you’re the competition). Switching from
Google to Bing may be easier than switching from Windows to Mac, but in
practice you don’t because Google, with its head start and larger market share,
knows better what you want, even if Bing’s technology is just as good. And pity
a new entrant into the search business, starting with zero data against engines
with over a decade of learning behind them.

http://Match.com

You might think that after a while more data is just more of the same, but
that saturation point is nowhere in sight. The long tail keeps going. If you look at
the recommendations Amazon or Netflix gives you, it’s clear they’re still very
crude, and Google’s search results still leave a lot to be desired. Every feature of
a product, every corner of a website can potentially be improved using machine
learning. Should the link at the bottom of a page be red or blue? Try them both
and see which one gets the most clicks. Better still, keep the learners running and
continuously adjust all aspects of the website.

The same dynamic happens in any market where there’s lots of choice and
lots of data. The race is on, and whoever learns fastest wins. It doesn’t stop with
understanding customers better: companies can apply machine learning to every
aspect of their operations, provided data is available, and data is pouring in from
computers, communication devices, and ever-cheaper and more ubiquitous
sensors. “Data is the new o0il” is a popular refrain, and as with oil, refining it is
big business. IBM, as well plugged into the corporate world as anyone, has
organized its growth strategy around providing analytics to companies.
Businesses look at data as a strategic asset: What data do I have that my
competitors don’t? How can [take advantage of it? What data do my
competitors have that I don’t?

In the same way that a bank without databases can’t compete with a bank
that has them, a company without machine learning can’t keep up with one that
uses it. While the first company’s experts write a thousand rules to predict what
its customers want, the second company’s algorithms learn billions of rules, a
whole set of them for each individual customer. It’s about as fair as spears
against machine guns. Machine learning is a cool new technology, but that’s not
why businesses embrace it. They embrace it because they have no choice.

Supercharging the scientific method

Machine learning is the scientific method on steroids. It follows the same
process of generating, testing, and discarding or refining hypotheses. But while a
scientist may spend his or her whole life coming up with and testing a few
hundred hypotheses, a machine-learning system can do the same in a fraction of
a second. Machine learning automates discovery. It’s no surprise, then, that it’s
revolutionizing science as much as it’s revolutionizing business.

To make progress, every field of science needs to have data commensurate

with the complexity of the phenomena it studies. This is why physics was the
first science to take off: Tycho Brahe’s recordings of the positions of the planets
and Galileo’s observations of pendulums and inclined planes were enough to
infer Newton’s laws. It’s also why molecular biology, despite being younger
than neuroscience, has outpaced it: DNA microarrays and high-throughput
sequencing provide a volume of data that neuroscientists can only hope for. And
it’s the reason why social science research is such an uphill battle: if all you have
is a sample of a hundred people, with a dozen measurements apiece, all you can
model is some very narrow phenomenon. But even this narrow phenomenon
does not exist in isolation; it’s affected by a myriad others, which means you’re
still far from understanding it.

The good news today is that sciences that were once data-poor are now data-
rich. Instead of paying fifty bleary-eyed undergraduates to perform some task in
the lab, psychologists can get as many subjects as they want by posting the task
on Amazon’s Mechanical Turk. (It makes for a more diverse sample too.) It’s
getting hard to remember, but little more than a decade ago sociologists studying
social networks lamented that they couldn’t get their hands on a network with
more than a few hundred members. Now there’s Facebook, with over a billion.
A good chunk of those members post almost blow-by-blow accounts of their
lives too; it’s like having a live feed of social life on planet Earth. In
neuroscience, connectomics and functional magnetic resonance imaging have
opened an extraordinarily detailed window into the brain. In molecular biology,
databases of genes and proteins grow exponentially. Even in “older” sciences
like physics and astronomy, progress continues because of the flood of data
pouring forth from particle accelerators and digital sky surveys.

Big data is no use if you can’t turn it into knowledge, however, and there
aren’t enough scientists in the world for the task. Edwin Hubble discovered new
galaxies by poring over photographic plates, but you can bet the half-billion sky
objects in the Sloan Digital Sky Survey weren’t identified that way. It would be
like trying to count the grains of sand on a beach by hand. You can write rules to
distinguish galaxies from stars from noise objects (such as birds, planes,
Superman), but they’re not very accurate. Instead, the SKICAT (sky image
cataloging and analysis tool) project used a learning algorithm. Starting from
plates where objects were labeled with the correct categories, it figured out what
characterizes each one and applied the result to all the unlabeled plates. Even
better, it could classify objects that were too faint for humans to label, and these
comprise the majority of the survey.

With big data and machine learning, you can understand much more
complex phenomena than before. In most fields, scientists have traditionally
used only very limited kinds of models, like linear regression, where the curve
you fit to the data is always a straight line. Unfortunately, most phenomena in
the world are nonlinear. (Or fortunately, since otherwise life would be very
boring—in fact, there would be no life.) Machine learning opens up a vast new
world of nonlinear models. It’s like turning on the lights in a room where only a
sliver of moonlight filtered before.

In biology, learning algorithms figure out where genes are located in a DNA
molecule, where superfluous bits of RNA get spliced out before proteins are
synthesized, how proteins fold into their characteristic shapes, and how different
conditions affect the expression of different genes. Rather than testing thousands
of new drugs in the lab, learners predict whether they will work, and only the
most promising get tested. They also weed out molecules likely to have nasty
side effects, like cancer. This avoids expensive failures, like candidate drugs
being nixed only after human trials have begun.

The biggest challenge, however, is assembling all this information into a
coherent whole. What are all the things that affect your risk of heart disease, and
how do they interact? All Newton needed was three laws of motion and one of
gravitation, but a complete model of a cell, an organism, or a society is more
than any one human can discover. As knowledge grows, scientists specialize
ever more narrowly, but no one is able to put the pieces together because there
are far too many pieces. Scientists collaborate, but language is a very slow
medium of communication. Scientists try to keep up with others’ research, but
the volume of publications is so high that they fall farther and farther behind.
Often, redoing an experiment is easier than finding the paper that reported it.
Machine learning comes to the rescue, scouring the literature for relevant
information, translating one area’s jargon into another’s, and even making
connections that scientists weren’t aware of. Increasingly, machine learning acts
as a giant hub, through which modeling techniques invented in one field make
their way into others.

If computers hadn’t been invented, science would have ground to a halt in
the second half of the twentieth century. This might not have been immediately
apparent to the scientists because they would have been focused on whatever
limited progress they could still make, but the ceiling for that progress would
have been much, much lower. Similarly, without machine learning, many
sciences would face diminishing returns in the decades to come.

To see the future of science, take a peek inside a lab at the Manchester
Institute of Biotechnology, where a robot by the name of Adam is hard at work
figuring out which genes encode which enzymes in yeast. Adam has a model of
yeast metabolism and general knowledge of genes and proteins. It makes
hypotheses, designs experiments to test them, physically carries them out,
analyzes the results, and comes up with new hypotheses until it’s satisfied.
Today, human scientists still independently check Adam’s conclusions before
they believe them, but tomorrow they’ll leave it to robot scientists to check each
other’s hypotheses.

A billion Bill Clintons

Machine learning was the kingmaker in the 2012 presidential election. The
factors that usually decide presidential elections—the economy, likability of the
candidates, and so on—added up to a wash, and the outcome came down to a
few key swing states. Mitt Romney’s campaign followed a conventional polling
approach, grouping voters into broad categories and targeting each one or not.
Neil Newhouse, Romney’s pollster, said that “if we can win independents in
Ohio, we can win this race.” Romney won them by 7 percent but still lost the
state and the election.

In contrast, President Obama hired Rayid Ghani, a machine-learning expert,
as chief scientist of his campaign, and Ghani proceeded to put together the
greatest analytics operation in the history of politics. They consolidated all voter
information into a single database; combined it with what they could get from
social networking, marketing, and other sources; and set about predicting four
things for each individual voter: how likely he or she was to support Obama,
show up at the polls, respond to the campaign’s reminders to do so, and change
his or her mind about the election based on a conversation about a specific issue.
Based on these voter models, every night the campaign ran 66,000 simulations
of the election and used the results to direct its army of volunteers: whom to call,
which doors to knock on, what to say.

In politics, as in business and war, there is nothing worse than seeing your
opponent make moves that you don’t understand and don’t know what to do
about until it’s too late. That’s what happened to the Romney campaign. They
could see the other side buying ads in particular cable stations in particular
towns but couldn’t tell why; their crystal ball was too fuzzy. In the end, Obama

won every battleground state save North Carolina and by larger margins than
even the most accurate pollsters had predicted. The most accurate pollsters, in
turn, were the ones (like Nate Silver) who used the most sophisticated prediction
techniques; they were less accurate than the Obama campaign because they had
fewer resources. But they were a lot more accurate than the traditional pundits,
whose predictions were based on their expertise.

You might think the 2012 election was a fluke: most elections are not close
enough for machine learning to be the deciding factor. But machine learning will
cause more elections to be close in the future. In politics, as in everything,
learning is an arms race. In the days of Karl Rove, a former direct marketer and
data miner, the Republicans were ahead. By 2012, they’d fallen behind, but now
they’re catching up again. We don’t know who’ll be ahead in the next election
cycle, but both parties will be working hard to win. That means understanding
the voters better and tailoring the candidates’ pitches—even choosing the
candidates themselves—accordingly. The same applies to entire party platforms,
during and between election cycles: if detailed voter models, based on hard data,
say a party’s current platform is a losing one, the party will change it. As a
result, major events aside, gaps between candidates in the polls will be smaller
and shorter lived. Other things being equal, the candidates with the better voter
models will win, and voters will be better served for it.

One of the greatest talents a politician can have is the ability to understand
voters, individually or in small groups, and speak directly to them (or seem to).
Bill Clinton is the paradigmatic example of this in recent memory. The effect of
machine learning is like having a dedicated Bill Clinton for every voter. Each of
these mini-Clintons is a far cry from the real one, but they have the advantage of
numbers; even Bill Clinton can’t know what every single voter in America is
thinking (although he’d surely like to). Learning algorithms are the ultimate
retail politicians.

Of course, as with companies, politicians can put their machine-learned
knowledge to bad uses as well as good ones. For example, they could make
inconsistent promises to different voters. But voters, media, and watchdog
organizations can do their own data mining and expose politicians who cross the
line. The arms race is not just between candidates but among all participants in
the democratic process.

The larger outcome is that democracy works better because the bandwidth of
communication between voters and politicians increases enormously. In these
days of high-speed Internet, the amount of information your elected

representatives get from you is still decidedly nineteenth century: a hundred bits
or so every two years, as much as fits on a ballot. This is supplemented by
polling and perhaps the occasional e-mail or town-hall meeting, but that’s still
precious little. Big data and machine learning change the equation. In the future,
provided voter models are accurate, elected officials will be able to ask voters
what they want a thousand times a day and act accordingly—without having to
pester the actual flesh-and-blood citizens.

One if by land, two if by Internet

Out in cyberspace, learning algorithms man the nation’s ramparts. Every day,
foreign attackers attempt to break into computers at the Pentagon, defense
contractors, and other companies and government agencies. Their tactics change
continually; what worked against yesterday’s attacks is powerless against
today’s. Writing code to detect and block each one would be as effective as the
Maginot Line, and the Pentagon’s Cyber Command knows it. But machine
learning runs into a problem if an attack is the first of its kind and there aren’t
any previous examples of it to learn from. Instead, learners build models of
normal behavior, of which there’s plenty, and flag anomalies. Then they call in
the cavalry (aka system administrators). If cyberwar ever comes to pass, the
generals will be human, but the foot soldiers will be algorithms. Humans are too
slow and too few and would be quickly swamped by an army of bots. We need
our own bot army, and machine learning is like West Point for bots.

Cyberwar is an instance of asymmetric warfare, where one side can’t match
the other’s conventional military power but can still inflict grievous damage. A
handful of terrorists armed with little more than box cutters can knock down the
Twin Towers and kill thousands of innocents. All the biggest threats to US
security today are in the realm of asymmetric warfare, and there’s an effective
weapon against all of them: information. If the enemy can’t hide, he can’t
survive. The good news is that we have plenty of information, and that’s also the
bad news.

The National Security Agency (NSA) has become infamous for its
bottomless appetite for data: by one estimate, every day it intercepts over a
billion phone calls and other communications around the globe. Privacy issues
aside, however, it doesn’t have millions of staffers to eavesdrop on all these calls
and e-mails or even just keep track of who’s talking to whom. The vast majority

of calls are perfectly innocent, and writing a program to pick out the few
suspicious ones is very hard. In the old days, the NSA used keyword matching,
but that’s easy to get around. (Just call the bombing a “wedding” and the bomb
the “wedding cake.”) In the twenty-first century, it’s a job for machine learning.
Secrecy is the NSA’s trademark, but its director has testified to Congress that
mining of phone logs has already halted dozens of terrorism threats.

Terrorists can hide in the crowd at a football game, but learners can pick out
their faces. They can make exotic bombs, but learners can sniff them out.
Learners can also do something more subtle: connect the dots between events
that individually seem harmless but add up to an ominous pattern. This approach
could have prevented 9/11. There’s a further twist: once a learned program is
deployed, the bad guys change their behavior to defeat it. This contrasts with the
natural world, which always works the same way. The solution is to marry
machine learning with game theory, something I’ve worked on in the past: don’t
just learn to defeat what your opponent does now; learn to parry what he might
do against your learner. Factoring in the costs and benefits of different actions,
as game theory does, can also help strike the right balance between privacy and
security.

During the Battle of Britain, the Royal Air Force held back the Luftwaffe
despite being heavily outnumbered. German pilots couldn’t understand how,
wherever they went, they always ran into the RAF. The British had a secret
weapon: radar, which detected the German planes well before they crossed into
Britain’s airspace. Machine learning is like having a radar that sees into the
future. Don’t just react to your adversary’s moves; predict them and preempt
them.

An example of this closer to home is what’s known as predictive policing.
By forecasting crime trends and strategically focusing patrols where they’re
most likely to be needed, as well as taking other preventive measures, a city’s
police force can effectively do the job of a much larger one. In many ways, law
enforcement is similar to asymmetric warfare, and many of the same learning
techniques apply, whether it’s in fraud detection, uncovering criminal networks,
or plain old beat policing.

Machine learning also has a growing role on the battlefield. Learners can
help dissipate the fog of war, sifting through reconnaissance imagery, processing
after-action reports, and piecing together a picture of the situation for the
commander. Learning powers the brains of military robots, helping them keep
their bearings, adapt to the terrain, distinguish enemy vehicles from civilian

ones, and home in on their targets. DARPA’s AlphaDog carries soldiers’ gear
for them. Drones can fly autonomously with the help of learning algorithms;
although they are still partly controlled by human pilots, the trend is for one pilot
to oversee larger and larger swarms. In the army of the future, learners will
greatly outnumber soldiers, saving countless lives.

Where are we headed?

Technology trends come and go all the time. What’s unusual about machine
learning is that, through all these changes, through boom and bust, it just keeps
growing. Its first big hit was in finance, predicting stock ups and downs, starting
in the late 1980s. The next wave was mining corporate databases, which by the
mid-1990s were starting to grow quite large, and in areas like direct marketing,
customer relationship management, credit scoring, and fraud detection. Then
came the web and e-commerce, where automated personalization quickly
became de rigueur. When the dot-com bust temporarily curtailed that, the use of
learning for web search and ad placement took off. For better or worse, the 9/11
attacks put machine learning in the front line of the war on terror. Web 2.0
brought a swath of new applications, from mining social networks to figuring
out what bloggers are saying about your products. In parallel, scientists of all
stripes were increasingly turning to large-scale modeling, with molecular
biologists and astronomers leading the charge. The housing bust barely
registered; its main effect was a welcome transfer of talent from Wall Street to
Silicon Valley. In 2011, the “big data” meme hit, putting machine learning
squarely in the center of the global economy’s future. Today, there seems to be
hardly an area of human endeavor untouched by machine learning, including
seemingly unlikely candidates like music, sports, and wine tasting.

As remarkable as this growth is, it’s only a foretaste of what’s to come.
Despite its usefulness, the generation of learning algorithms currently at work in
industry is, in fact, quite limited. When the algorithms now in the lab make it to
the front lines, Bill Gates’s remark that a breakthrough in machine learning
would be worth ten Microsofts will seem conservative. And if the ideas that
really put a glimmer in researchers’ eyes bear fruit, machine learning will bring
about not just a new era of civilization, but a new stage in the evolution of life on
Earth.

What makes this possible? How do learning algorithms work? What can’t

they currently do, and what will the next generation look like? How will the
machine-learning revolution unfold? And what opportunities and dangers should
you look out for? That’s what this book is about—read on!

CHAPTER TWO

fe

The Master Algorithm

Even more astonishing than the breadth of applications of machine learning is
that it’s the same algorithms doing all of these different things. Outside of
machine learning, if you have two different problems to solve, you need to write
two different programs. They might use some of the same infrastructure, like the
same programming language or the same database system, but a program to, say,
play chess is of no use if you want to process credit-card applications. In
machine learning, the same algorithm can do both, provided you give it the
appropriate data to learn from. In fact, just a few algorithms are responsible for
the great majority of machine-learning applications, and we’ll take a look at
them in the next few chapters.

For example, consider Naive Bayes, a learning algorithm that can be
expressed as a single short equation. Given a database of patient records—their
symptoms, test results, and whether or not they had some particular condition—
Naive Bayes can learn to diagnose the condition in a fraction of a second, often
better than doctors who spent many years in medical school. It can also beat
medical expert systems that took thousands of person-hours to build. The same
algorithm is widely used to learn spam filters, a problem that at first sight has
nothing to do with medical diagnosis. Another simple learner, called the nearest-
neighbor algorithm, has been used for everything from handwriting recognition
to controlling robot hands to recommending books and movies you might like.
And decision tree learners are equally apt at deciding whether your credit-card
application should be accepted, finding splice junctions in DNA, and choosing

the next move in a game of chess.

Not only can the same learning algorithms do an endless variety of different
things, but they’re shockingly simple compared to the algorithms they replace.
Most learners can be coded up in a few hundred lines, or perhaps a few thousand
if you add a lot of bells and whistles. In contrast, the programs they replace can
run in the hundreds of thousands or even millions of lines, and a single learner
can induce an unlimited number of different programs.

If so few learners can do so much, the logical question is: Could one learner
do everything? In other words, could a single algorithm learn all that can be
learned from data? This is a very tall order, since it would ultimately include
everything in an adult’s brain, everything evolution has created, and the sum
total of all scientific knowledge. But in fact all the major learners—including
nearest-neighbor, decision trees, and Bayesian networks, a generalization of
Naive Bayes—are universal in the following sense: if you give the learner
enough of the appropriate data, it can approximate any function arbitrarily
closely—which is math-speak for learning anything. The catch is that “enough
data” could be infinite. Learning from finite data requires making assumptions,
as we’ll see, and different learners make different assumptions, which makes
them good for some things but not others.

But what if instead of leaving these assumptions embedded in the algorithm
we make them an explicit input, along with the data, and allow the user to
choose which ones to plug in, perhaps even state new ones? Is there an algorithm
that can take in any data and assumptions and output the knowledge that’s
implicit in them? I believe so. Of course, we have to put some limits on what the
assumptions can be, otherwise we could cheat by giving the algorithm the entire
target knowledge, or close to it, in the form of assumptions. But there are many
ways to do this, from limiting the size of the input to requiring that the
assumptions be no stronger than those of current learners.

The question then becomes: How weak can the assumptions be and still
allow all relevant knowledge to be derived from finite data? Notice the word
relevant: we’re only interested in knowledge about our world, not about worlds
that don’t exist. So inventing a universal learner boils down to discovering the
deepest regularities in our universe, those that all phenomena share, and then
figuring out a computationally efficient way to combine them with data. This
requirement of computational efficiency precludes just using the laws of physics
as the regularities, as we’ll see. It does not, however, imply that the universal
learner has to be as efficient as more specialized ones. As so often happens in

computer science, we’re willing to sacrifice efficiency for generality. This also
applies to the amount of data required to learn a given target knowledge: a
universal learner will generally need more data than a specialized one, but that’s
OK provided we have the necessary amount—and the bigger data gets, the more
likely this will be the case.

Here, then, is the central hypothesis of this book:

All knowledge—past, present, and future—can be derived from data by a
single, universal learning algorithm.

I call this learner the Master Algorithm. If such an algorithm is possible,
inventing it would be one of the greatest scientific achievements of all time. In
fact, the Master Algorithm is the last thing we’ll ever have to invent because,
once we let it loose, it will go on to invent everything else that can be invented.
All we need to do is provide it with enough of the right kind of data, and it will
discover the corresponding knowledge. Give it a video stream, and it learns to
see. Give it a library, and it learns to read. Give it the results of physics
experiments, and it discovers the laws of physics. Give it DNA crystallography
data, and it discovers the structure of DNA.

This may sound far-fetched: How could one algorithm possibly learn so
many different things and such difficult ones? But in fact many lines of evidence
point to the existence of a Master Algorithm. Let’s see what they are.

The argument from neuroscience

In April 2000, a team of neuroscientists from MIT reported in Nature the results
of an extraordinary experiment. They rewired the brain of a ferret, rerouting the
connections from the eyes to the auditory cortex (the part of the brain
responsible for processing sounds) and rerouting the connections from the ears
to the visual cortex. You’d think the result would be a severely disabled ferret,
but no: the auditory cortex learned to see, the visual cortex learned to hear, and
the ferret was fine. In normal mammals, the visual cortex contains a map of the
retina: neurons connected to nearby regions of the retina are close to each other
in the cortex. Instead, the rewired ferrets developed a map of the retina in the
auditory cortex. If the visual input is redirected instead to the somatosensory
cortex, responsible for touch perception, it too learns to see. Other mammals also

have this ability.

In congenitally blind people, the visual cortex can take over other brain
functions. In deaf ones, the auditory cortex does the same. Blind people can
learn to “see” with their tongues by sending video images from a head-mounted
camera to an array of electrodes placed on the tongue, with high voltages
corresponding to bright pixels and low voltages to dark ones. Ben Underwood
was a blind kid who taught himself to use echolocation to navigate, like bats do.
By clicking his tongue and listening to the echoes, he could walk around without
bumping into obstacles, ride a skateboard, and even play basketball. All of this is
evidence that the brain uses the same learning algorithm throughout, with the
areas dedicated to the different senses distinguished only by the different inputs
they are connected to (e.g., eyes, ears, nose). In turn, the associative areas
acquire their function by being connected to multiple sensory regions, and the
“executive” areas acquire theirs by connecting the associative areas and motor
output.

Examining the cortex under a microscope leads to the same conclusion. The
same wiring pattern is repeated everywhere. The cortex is organized into
columns with six distinct layers, feedback loops running to another brain
structure called the thalamus, and a recurring pattern of short-range inhibitory
connections and longer-range excitatory ones. A certain amount of variation is
present, but it looks more like different parameters or settings of the same
algorithm than different algorithms. Low-level sensory areas have more
noticeable differences, but as the rewiring experiments show, these are not
crucial. The cerebellum, the evolutionarily older part of the brain responsible for
low-level motor control, has a clearly different and very regular architecture,
built out of much smaller neurons, so it would seem that at least motor learning
uses a different algorithm. If someone’s cerebellum is injured, however, the
cortex takes over its function. Thus it seems that evolution kept the cerebellum
around not because it does something the cortex can’t, but just because it’s more
efficient.

The computations taking place within the brain’s architecture are also similar
throughout. All information in the brain is represented in the same way, via the
electrical firing patterns of neurons. The learning mechanism is also the same:
memories are formed by strengthening the connections between neurons that fire
together, using a biochemical process known as long-term potentiation. All this
is not just true of humans: different animals have similar brains. Ours is
unusually large, but seems to be built along the same principles as other

animals’.

Another line of argument for the unity of the cortex comes from what might
be called the poverty of the genome. The number of connections in your brain is
over a million times the number of letters in your genome, so it’s not physically
possible for the genome to specify in detail how the brain is wired.

The most important argument for the brain being the Master Algorithm,
however, is that it’s responsible for everything we can perceive and imagine. If
something exists but the brain can’t learn it, we don’t know it exists. We may
just not see it or think it’s random. Either way, if we implement the brain in a
computer, that algorithm can learn everything we can. Thus one route—arguably
the most popular one—to inventing the Master Algorithm is to reverse engineer
the brain. Jeff Hawkins took a stab at this in his book On Intelligence. Ray
Kurzweil pins his hopes for the Singularity—the rise of artificial intelligence
that greatly exceeds the human variety—on doing just that and takes a stab at it
himself in his book How to Create a Mind. Nevertheless, this is only one of
several possible approaches, as we’ll see. It’s not even necessarily the most
promising one, because the brain is phenomenally complex, and we’re still in the
very early stages of deciphering it. On the other hand, if we can’t figure out the
Master Algorithm, the Singularity won’t happen any time soon.

Not all neuroscientists believe in the unity of the cortex; we need to learn
more before we can be sure. The question of just what the brain can and can’t
learn is also hotly debated. But if there’s something we know but the brain can’t
learn, it must have been learned by evolution.

The argument from evolution

Life’s infinite variety is the result of a single mechanism: natural selection. Even
more remarkable, this mechanism is of a type very familiar to computer
scientists: iterative search, where we solve a problem by trying many candidate
solutions, selecting and modifying the best ones, and repeating these steps as
many times as necessary. Evolution is an algorithm. Paraphrasing Charles
Babbage, the Victorian-era computer pioneer, God created not species but the
algorithm for creating species. The “endless forms most beautiful” Darwin spoke
of in the conclusion of The Origin of Species belie a most beautiful unity: all of
those forms are encoded in strings of DNA, and all of them come about by
modifying and combining those strings. Who would have guessed, given only a

description of this algorithm, that it could produce you and me? If evolution can
learn us, it can conceivably also learn everything that can be learned, provided
we implement it on a powerful enough computer. Indeed, evolving programs by
simulating natural selection is a popular endeavor in machine learning.
Evolution, then, is another promising path to the Master Algorithm.

Evolution is the ultimate example of how much a simple learning algorithm
can achieve given enough data. Its input is the experience and fate of all living
creatures that ever existed. (Now that’s big data.) On the other hand, it’s been
running for over three billion years on the most powerful computer on Earth:
Earth itself. A computer version of it had better be faster and less data intensive
than the original. Which one is the better model for the Master Algorithm:
evolution or the brain? This is machine learning’s version of the nature versus
nurture debate. And, just as nature and nurture combine to produce us, perhaps
the true Master Algorithm contains elements of both.

The argument from physics

In a famous 1959 essay, the physicist and Nobel laureate Eugene Wigner
marveled at what he called “the unreasonable effectiveness of mathematics in
the natural sciences.” By what miracle do laws induced from scant observations
turn out to apply far beyond them? How can the laws be many orders of
magnitude more precise than the data they are based on? Most of all, why is it
that the simple, abstract language of mathematics can accurately capture so
much of our infinitely complex world? Wigner considered this a deep mystery,
in equal parts fortunate and unfathomable. Nevertheless, it is so, and the Master
Algorithm is a logical extension of it.

If the world were just a blooming, buzzing confusion, there would be reason
to doubt the existence of a universal learner. But if everything we experience is
the product of a few simple laws, then it makes sense that a single algorithm can
induce all that can be induced. All the Master Algorithm has to do is provide a
shortcut to the laws’ consequences, replacing impossibly long mathematical
derivations with much shorter ones based on actual observations.

For example, we believe that the laws of physics gave rise to evolution, but
we don’t know how. Instead, we can induce natural selection directly from
observations, as Darwin did. Countless wrong inferences could be drawn from
those observations, but most of them never occur to us, because our inferences

are influenced by our broad knowledge of the world, and that knowledge is
consistent with the laws of nature.

How much of the character of physical law percolates up to higher domains
like biology and sociology remains to be seen, but the study of chaos provides
many tantalizing examples of very different systems with similar behavior, and
the theory of universality explains them. The Mandelbrot set is a beautiful
example of how a very simple iterative procedure can give rise to an
inexhaustible variety of forms. If the mountains, rivers, clouds, and trees of the
world are all the result of such procedures—and fractal geometry shows they are
—perhaps those procedures are just different parametrizations of a single one
that we can induce from them.

In physics, the same equations applied to different quantities often describe
phenomena in completely different fields, like quantum mechanics,
electromagnetism, and fluid dynamics. The wave equation, the diffusion
equation, Poisson’s equation: once we discover it in one field, we can more
readily discover it in others; and once we’ve learned how to solve it in one field,
we know how to solve it in all. Moreover, all these equations are quite simple
and involve the same few derivatives of quantities with respect to space and
time. Quite conceivably, they are all instances of a master equation, and all the
Master Algorithm needs to do is figure out how to instantiate it for different data
sets.

Another line of evidence comes from optimization, the branch of
mathematics concerned with finding the input to a function that produces its
highest output. For example, finding the sequence of stock purchases and sales
that maximizes your total returns is an optimization problem. In optimization,
simple functions often give rise to surprisingly complex solutions. Optimization
plays a prominent role in almost every field of science, technology, and
business, including machine learning. Each field optimizes within the constraints
defined by optimizations in other fields. We try to maximize our happiness
within economic constraints, which are firms’ best solutions within the
constraints of the available technology—which in turn consists of the best
solutions we could find within the constraints of biology and physics. Biology,
in turn, is the result of optimization by evolution within the constraints of
physics and chemistry, and the laws of physics themselves are solutions to
optimization problems. Perhaps, then, everything that exists is the progressive
solution of an overarching optimization problem, and the Master Algorithm
follows from the statement of that problem.

Physicists and mathematicians are not the only ones who find unexpected
connections between disparate fields. In his book Consilience, the distinguished
biologist E. O. Wilson makes an impassioned argument for the unity of all
knowledge, from science to the humanities. The Master Algorithm is the
ultimate expression of this unity: if all knowledge shares a common pattern, the
Master Algorithm exists, and vice versa.

Nevertheless, physics is unique in its simplicity. Outside physics and
engineering, the track record of mathematics is more mixed. Sometimes it’s only
reasonably effective, and sometimes its models are too oversimplified to be
useful. This tendency to oversimplify stems from the limitations of the human
mind, however, not from the limitations of mathematics. Most of the brain’s
hardware (or rather, wetware) is devoted to sensing and moving, and to do math
we have to borrow parts of it that evolved for language. Computers have no such
limitations and can easily turn big data into very complex models. Machine
learning is what you get when the unreasonable effectiveness of mathematics
meets the unreasonable effectiveness of data. Biology and sociology will never
be as simple as physics, but the method by which we discover their truths can be.

The argument from statistics

According to one school of statisticians, a single simple formula underlies all
learning. Bayes’ theorem, as the formula is known, tells you how to update your
beliefs whenever you see new evidence. A Bayesian learner starts with a set of
hypotheses about the world. When it sees a new piece of data, the hypotheses
that are compatible with it become more likely, and the hypotheses that aren’t
become less likely (or even impossible). After seeing enough data, a single
hypothesis dominates, or a few do. For example, if I’'m looking for a program
that accurately predicts stock movements and a stock that a candidate program
had predicted would go up instead goes down, that candidate loses credibility.
After I've reviewed a number of candidates, only a few credible ones will
remain, and they will encapsulate my new knowledge of the stock market.
Bayes’ theorem is a machine that turns data into knowledge. According to
Bayesian statisticians, it’s the only correct way to turn data into knowledge. If
they’re right, either Bayes’ theorem is the Master Algorithm or it’s the engine
that drives it. Other statisticians have serious reservations about the way Bayes’
theorem is used and prefer different ways to learn from data. In the days before

computers, Bayes’ theorem could only be applied to very simple problems, and
the idea of it as a universal learner would have seemed far-fetched. With big data
and big computing to go with it, however, Bayes can find its way in vast
hypothesis spaces and has spread to every conceivable field of knowledge. If
there’s a limit to what Bayes can learn, we haven’t found it yet.

The argument from computer science

When [was a senior in college, I wasted a summer playing Tetris, a highly
addictive video game where variously shaped pieces fall from above and which
you try to pack as closely together as you can; the game is over when the pile of
pieces reaches the top of the screen. Little did I know that this was my
introduction to NP-completeness, the most important problem in theoretical
computer science. Turns out that, far from an idle pursuit, mastering Tetris
—really mastering it—is one of the most useful things you could ever do. If you
can solve Tetris, you can solve thousands of the hardest and most important
problems in science, technology, and management—all in one fell swoop. That’s
because at heart they are all the same problem. This is one of the most
astonishing facts in all of science.

Figuring out how proteins fold into their characteristic shapes; reconstructing
the evolutionary history of a set of species from their DNA; proving theorems in
propositional logic; detecting arbitrage opportunities in markets with transaction
costs; inferring a three-dimensional shape from two-dimensional views;
compressing data on a disk; forming a stable coalition in politics; modeling
turbulence in sheared flows; finding the safest portfolio of investments with a
given return, the shortest route to visit a set of cities, the best layout of
components on a microchip, the best placement of sensors in an ecosystem, or
the lowest energy state of a spin glass; scheduling flights, classes, and factory
jobs; optimizing resource allocation, urban traffic flow, social welfare, and (most
important) your Tetris score: these are all NP-complete problems, meaning that
if you can efficiently solve one of them you can efficiently solve all problems in
the class NP, including each other. Who would have guessed that all these
problems, superficially so different, are really the same? But if they are, it makes
sense that one algorithm could learn to solve all of them (or, more precisely, all
efficiently solvable instances).

P and NP are the two most important classes of problems in computer

science. (The names are not very mnemonic, unfortunately.) A problem is in P if
we can solve it efficiently, and it’s in NP if we can efficiently check its solution.
The famous P = NP question is whether every efficiently checkable problem is
also efficiently solvable. Because of NP-completeness, all it takes to answer it is
to prove that one NP-complete problem is efficiently solvable (or not). NP is not
the hardest class of problems in computer science, but it’s arguably the hardest
“realistic” class: if you can’t even check a problem’s solution before the universe
ends, what’s the point of trying to solve it? Humans are good at solving NP
problems approximately, and conversely, problems that we find interesting (like
Tetris) often have an “NP-ness” about them. One definition of artificial
intelligence is that it consists of finding heuristic solutions to NP-complete
problems. Often, we do this by reducing them to satisfiability, the canonical NP-
complete problem: Can a given logical formula ever be true, or is it self-
contradictory? If we invent a learner that can learn to solve satisfiability, it has a
good claim to being the Master Algorithm.

NP-completeness aside, the sheer existence of computers is itself a powerful
sign that there is a Master Algorithm. If you could travel back in time to the
early twentieth century and tell people that a soon-to-be-invented machine would
solve problems in every realm of human endeavor—the same machine for every
problem—no one would believe you. They would say that each machine can
only do one thing: sewing machines don’t type, and typewriters don’t sew. Then
in 1936 Alan Turing imagined a curious contraption with a tape and a head that
read and wrote symbols on it, now known as a Turing machine. Every
conceivable problem that can be solved by logical deduction can be solved by a
Turing machine. Furthermore, a so-called universal Turing machine can simulate
any other by reading its specification from the tape—in other words, it can be
programmed to do anything.

The Master Algorithm is for induction, the process of learning, what the
Turing machine is for deduction. It can learn to simulate any other algorithm by
reading examples of its input-output behavior. Just as there are many models of
computation equivalent to a Turing machine, there are probably many different
equivalent formulations of a universal learner. The point, however, is to find the
first such formulation, just as Turing found the first formulation of the general-
purpose computer.

Machine learners versus knowledge engineers

Of course, the Master Algorithm has at least as many skeptics as it has
proponents. Doubt is in order when something looks like a silver bullet. The
most determined resistance comes from machine learning’s perennial foe:
knowledge engineering. According to its proponents, knowledge can’t be
learned automatically; it must be programmed into the computer by human
experts. Sure, learners can extract some things from data, but nothing you’d
confuse with real knowledge. To knowledge engineers, big data is not the new
oil; it’s the new snake oil.

In the early days of Al, machine learning seemed like the obvious path to
computers with humanlike intelligence; Turing and others thought it was the
only plausible path. But then the knowledge engineers struck back, and by 1970
machine learning was firmly on the back burner. For a moment in the 1980s, it
seemed like knowledge engineering was about to take over the world, with
companies and countries making massive investments in it. But disappointment
soon set in, and machine learning began its inexorable rise, at first quietly, and
then riding a roaring wave of data.

Despite machine learning’s successes, the knowledge engineers remain
unconvinced. They believe that its limitations will soon become apparent, and
the pendulum will swing back. Marvin Minsky, an MIT professor and Al
pioneer, is a prominent member of this camp. Minsky is not just skeptical of
machine learning as an alternative to knowledge engineering, he’s skeptical of
any unifying ideas in Al. Minsky’s theory of intelligence, as expressed in his
book The Society of Mind, could be unkindly characterized as “the mind is just
one damn thing after another.” The Society of Mind is a laundry list of hundreds
of separate ideas, each with its own vignette. The problem with this approach to
Al is that it doesn’t work; it’s stamp collecting by computer. Without machine
learning, the number of ideas needed to build an intelligent agent is infinite. If a
robot had all the same capabilities as a human except learning, the human would
soon leave it in the dust.

Minsky was an ardent supporter of the Cyc project, the most notorious
failure in the history of Al. The goal of Cyc was to solve Al by entering into a
computer all the necessary knowledge. When the project began in the 1980s, its
leader, Doug Lenat, confidently predicted success within a decade. Thirty years
later, Cyc continues to grow without end in sight, and commonsense reasoning
still eludes it. Ironically, Lenat has belatedly embraced populating Cyc by
mining the web, not because Cyc can read, but because there’s no other way.

Even if by some miracle we managed to finish coding up all the necessary

pieces, our troubles would be just beginning. Over the years, a number of
research groups have attempted to build complete intelligent agents by putting
together algorithms for vision, speech recognition, language understanding,
reasoning, planning, navigation, manipulation, and so on. Without a unifying
framework, these attempts soon hit an insurmountable wall of complexity: too
many moving parts, too many interactions, too many bugs for poor human
software engineers to cope with. Knowledge engineers believe Al is just an
engineering problem, but we have not yet reached the point where engineering
can take us the rest of the way. In 1962, when Kennedy gave his famous moon-
shot speech, going to the moon was an engineering problem. In 1662, it wasn’t,
and that’s closer to where Al is today.

In industry, there’s no sign that knowledge engineering will ever be able to
compete with machine learning outside of a few niche areas. Why pay experts to
slowly and painfully encode knowledge into a form computers can understand,
when you can extract it from data at a fraction of the cost? What about all the
things the experts don’t know but you can discover from data? And when data is
not available, the cost of knowledge engineering seldom exceeds the benefit.
Imagine if farmers had to engineer each cornstalk in turn, instead of sowing the
seeds and letting them grow: we would all starve.

Another prominent machine-learning skeptic is the linguist Noam Chomsky.
Chomsky believes that language must be innate, because the examples of
grammatical sentences children hear are not enough to learn a grammar. This
only puts the burden of learning language on evolution, however; it does not
argue against the Master Algorithm but only against it being something like the
brain. Moreover, if a universal grammar exists (as Chomsky believes),
elucidating it is a step toward elucidating the Master Algorithm. The only way
this is not the case is if language has nothing in common with other cognitive
abilities, which is implausible given its evolutionary recency.

In any case, if we formalize Chomsky’s “poverty of the stimulus” argument,
we find that it’s demonstrably false. In 1969, J. J. Horning proved that
probabilistic context-free grammars can be learned from positive examples only,
and stronger results have followed. (Context-free grammars are the linguist’s
bread and butter, and the probabilistic version models how likely each rule is to
be used.) Besides, language learning doesn’t happen in a vacuum; children get
all sorts of cues from their parents and the environment. If we’re able to learn
language from a few years’ worth of examples, it’s partly because of the
similarity between its structure and the structure of the world. This common

structure is what we’re interested in, and we know from Horning and others that
it suffices.

More generally, Chomsky is critical of all statistical learning. He has a list of
things statistical learners can’t do, but the list is fifty years out of date. Chomsky
seems to equate machine learning with behaviorism, where animal behavior is
reduced to associating responses with rewards. But machine learning is not
behaviorism. Modern learning algorithms can learn rich internal representations,
not just pairwise associations between stimuli.

In the end, the proof is in the pudding. Statistical language learners work,
and hand-engineered language systems don’t. The first eye-opener came in the
1970s, when DARPA, the Pentagon’s research arm, organized the first large-
scale speech recognition project. To everyone’s surprise, a simple sequential
learner of the type Chomsky derided handily beat a sophisticated knowledge-
based system. Learners like it are now used in just about every speech
recognizer, including Siri. Fred Jelinek, head of the speech group at IBM,
famously quipped that “every time I fire a linguist, the recognizer’s performance
goes up.” Stuck in the knowledge-engineering mire, computational linguistics
had a near-death experience in the late 1980s. Since then, learning-based
methods have swept the field, to the point where it’s hard to find a paper devoid
of learning in a computational linguistics conference. Statistical parsers analyze
language with accuracy close to that of humans, where hand-coded ones lagged
far behind. Machine translation, spelling correction, part-of-speech tagging,
word sense disambiguation, question answering, dialogue, summarization: the
best systems in these areas all use learning. Watson, the Jeopardy! computer
champion, would not have been possible without it.

To this Chomsky might reply that engineering successes are not proof of
scientific validity. On the other hand, if your buildings collapse and your engines
don’t run, perhaps something is wrong with your theory of physics. Chomsky
thinks linguists should focus on “ideal” speaker-listeners, as defined by him, and
this gives him license to ignore things like the need for statistics in language
learning. Perhaps it’s not surprising, then, that few experimentalists take his
theories seriously any more.

Another potential source of objections to the Master Algorithm is the notion,
popularized by the psychologist Jerry Fodor, that the mind is composed of a set
of modules with only limited communication between them. For example, when
you watch TV your “higher brain” knows that it’s only light flickering on a flat
surface, but your visual system still sees three-dimensional shapes. Even if we

believe in the modularity of mind, however, that does not imply that different
modules use different learning algorithms. The same algorithm operating on,
say, visual and verbal information may suffice.

Critics like Minsky, Chomsky, and Fodor once had the upper hand, but
thankfully their influence has waned. Nevertheless, we should keep their
criticisms in mind as we set out on the road to the Master Algorithm for two
reasons. The first is that knowledge engineers faced many of the same problems
machine learners do, and even if they didn’t succeed, they learned many
valuable lessons. The second is that learning and knowledge are intertwined in
surprisingly subtle ways, as we’ll soon find out. Unfortunately, the two camps
often talk past each other. They speak different languages: machine learning
speaks probability, and knowledge engineering speaks logic. Later in the book
we’ll see what to do about this.

Swan bites robot

“No matter how smart your algorithm, there are some things it just can’t learn.”
Outside of Al and cognitive science, the most common objections to machine
learning are variants of this claim. Nassim Taleb hammered on it forcefully in
his book The Black Swan. Some events are simply not predictable. If you’ve
only ever seen white swans, you think the probability of ever seeing a black one
is zero. The financial meltdown of 2008 was a “black swan.”

It’s true that some things are predictable and some aren’t, and the first duty
of the machine learner is to distinguish between them. But the goal of the Master
Algorithm is to learn everything that can be known, and that’s a vastly wider
domain than Taleb and others imagine. The housing bust was far from a black
swan; on the contrary, it was widely predicted. Most banks’ models failed to see
it coming, but that was due to well-understood limitations of those models, not
limitations of machine learning in general. Learning algorithms are quite capable
of accurately predicting rare, never-before-seen events; you could even say that
that’s what machine learning is all about. What’s the probability of a black swan
if you’ve never seen one? How about it’s the fraction of known species that
belatedly turned out to have black specimens? This is only a crude example;
we’ll see many deeper ones in this book.

A related, frequently heard objection is “Data can’t replace human intuition.”
In fact, it’s the other way around: human intuition can’t replace data. Intuition is

what you use when you don’t know the facts, and since you often don’t, intuition
is precious. But when the evidence is before you, why would you deny it?
Statistical analysis beats talent scouts in baseball (as Michael Lewis memorably
documented in Moneyball), it beats connoisseurs at wine tasting, and every day
we see new examples of what it can do. Because of the influx of data, the
boundary between evidence and intuition is shifting rapidly, and as with any
revolution, entrenched ways have to be overcome. If I'm the expert on X at
company Y, I don’t like to be overridden by some guy with data. There’s a
saying in industry: “Listen to your customers, not to the HiPPO,” HiPPO being
short for “highest paid person’s opinion.” If you want to be tomorrow’s
authority, ride the data, don’t fight it.

OK, some say, machine learning can find statistical regularities in data, but it
will never discover anything deep, like Newton’s laws. It arguably hasn’t yet,
but I bet it will. Stories of falling apples notwithstanding, deep scientific truths
are not low-hanging fruit. Science goes through three phases, which we can call
the Brahe, Kepler, and Newton phases. In the Brahe phase, we gather lots of
data, like Tycho Brahe patiently recording the positions of the planets night after
night, year after year. In the Kepler phase, we fit empirical laws to the data, like
Kepler did to the planets’ motions. In the Newton phase, we discover the deeper
truths. Most science consists of Brahe- and Kepler-like work; Newton moments
are rare. Today, big data does the work of billions of Brahes, and machine
learning the work of millions of Keplers. If—let’s hope so—there are more
Newton moments to be had, they are as likely to come from tomorrow’s learning
algorithms as from tomorrow’s even more overwhelmed scientists, or at least
from a combination of the two. (Of course, the Nobel prizes will go to the
scientists, whether they have the key insights or just push the button. Learning
algorithms have no ambitions of their own.) We’ll see in this book what those
algorithms might look like and speculate about what they might discover—such
as a cure for cancer.

Is the Master Algorithm a fox or a hedgehog?

We need to consider one more potential objection to the Master Algorithm,
perhaps the most serious one of all. It comes not from knowledge engineers or
disgruntled experts, but from the machine-learning practitioners themselves.
Putting that hat on for a moment, I might say: “But the Master Algorithm does

not look like my daily life. I try hundreds of variations of many different
learning algorithms on any given problem, and different algorithms do better on
different problems. How could a single algorithm replace them all?”

To which the answer is: indeed. Wouldn’t it be nice if, instead of trying
hundreds of variations of many algorithms, we just had to try hundreds of
variations of a single one? If we can figure out what’s important and not so
important in each one, what the important parts have in common and how they
complement each other, we can, indeed, synthesize a Master Algorithm from
them. That’s what we’re going to do in this book, or as close to it as we can.
Perhaps you, dear reader, will have some ideas of your own as you read it.

How complex will the Master Algorithm be? Thousands of lines of code?
Millions? We don’t know yet, but machine learning has a delightful history of
simple algorithms unexpectedly beating very fancy ones. In a famous passage of
his book The Sciences of the Artificial, Al pioneer and Nobel laureate Herbert
Simon asked us to consider an ant laboriously making its way home across a
beach. The ant’s path is complex, not because the ant itself is complex but
because the environment is full of dunelets to climb and pebbles to get around. If
we tried to model the ant by programming in every possible path, we’d be
doomed. Similarly, in machine learning the complexity is in the data; all the
Master Algorithm has to do is assimilate it, so we shouldn’t be surprised if it
turns out to be simple. The human hand is simple—four fingers, one opposable
thumb—and yet it can make and use an infinite variety of tools. The Master
Algorithm is to algorithms what the hand is to pens, swords, screwdrivers, and
forks.

As Isaiah Berlin memorably noted, some thinkers are foxes—they know
many small things—and some are hedgehogs—they know one big thing. The
same is true of learning algorithms. I hope the Master Algorithm is a hedgehog,
but even if it’s a fox, we can’t catch it soon enough. The biggest problem with
today’s learning algorithms is not that they are plural; it’s that, useful as they are,
they still don’t do everything we’d like them to. Before we can discover deep
truths with machine learning, we have to discover deep truths about machine
learning.

What’s at stake

Suppose you’ve been diagnosed with cancer, and the traditional treatments—

surgery, chemotherapy, and radiation therapy—have failed. What happens next
will determine whether you live or die. The first step is to get the tumor’s
genome sequenced. Companies like Foundation Medicine in Cambridge,
Massachusetts, will do that for you: send them a sample of the tumor and they
will send back a list of the known cancer-related mutations in its genome. This is
needed because every cancer is different, and no single drug is likely to work for
all. Cancers mutate as they spread through your body, and by natural selection,
the mutations most resistant to the drugs you’re taking are the most likely to
grow. The right drug for you may be one that works for only 5 percent of
patients, or you may need a combination of drugs that has never been tried
before. Perhaps it will take a new drug designed specifically for your cancer, or a
sequence of drugs to parry the cancer’s adaptations. Yet these drugs may have
side effects that are deadly for you but not most other people. No doctor can
keep track of all the information needed to predict the best treatment for you,
given your medical history and your cancer’s genome. It’s an ideal job for
machine learning, and yet today’s learners aren’t up to it. Each has some of the
needed capabilities but is missing others. The Master Algorithm is the complete
package. Applying it to vast amounts of patient and drug data, combined with
knowledge mined from the biomedical literature, is how we will cure cancer.

A universal learner is sorely needed in many other areas, from life-and-death
to mundane situations. Picture the ideal recommender system, one that
recommends the books, movies, and gadgets you would pick for yourself if you
had the time to check them all out. Amazon’s algorithm is a very far cry from it.
That’s partly because it doesn’t have enough data—mainly it just knows which
items you previously bought from Amazon—but if you went hog wild and gave
it access to your complete stream of consciousness from birth, it wouldn’t know
what to do with it. How do you transmute the kaleidoscope of your life, the
myriad different choices you’ve made, into a coherent picture of who you are
and what you want? This is well beyond the ken of today’s learners, but given
enough data, the Master Algorithm should be able to understand you roughly as
well as your best friend.

Someday there’ll be a robot in every house, doing the dishes, making the
beds, even looking after the children while the parents work. How soon depends
on how hard finding the Master Algorithm turns out to be. If the best we can do
is combine many different learners, each of which solves only a small part of the
Al problem, we’ll soon run into the complexity wall. This piecemeal approach
worked for Jeopardy!, but few believe tomorrow’s housebots will be Watson’s

grandchildren. It’s not that the Master Algorithm will single-handedly crack AI;
there’ll still be great feats of engineering to perform, and Watson is a good
preview of them. But the 80/20 rule applies: the Master Algorithm will be 80
percent of the solution and 20 percent of the work, so it’s surely the best place to
start.

The Master Algorithm’s impact on technology will not be limited to Al. A
universal learner is a phenomenal weapon against the complexity monster.
Systems that today are too complex to build will no longer be. Computers will
do more with less help from us. They will not repeat the same mistakes over and
over again, but learn with practice, like people do. Sometimes, like the butlers of
legend, they’ll even guess what we want before we express it. If computers make
us smarter, computers running the Master Algorithm will make us feel like
geniuses. Technological progress will noticeably speed up, not just in computer
science but in many different fields. This in turn will add to economic growth
and speed poverty’s decline. With the Master Algorithm to help synthesize and
distribute knowledge, the intelligence of an organization will be more than the
sum of its parts, not less. Routine jobs will be automated and replaced by more
interesting ones. Every job will be done better than it is today, whether by a
better-trained human, a computer, or a combination of the two. Stock-market
crashes will be fewer and smaller. With a fine grid of sensors covering the globe
and learned models to make sense of its output moment by moment, we will no
longer be flying blind; the health of our planet will take a turn for the better. A
model of you will negotiate the world on your behalf, playing elaborate games
with other people’s and entities’ models. And as a result of all this, our lives will
be longer, happier, and more productive.

Because the potential impact is so great, it would behoove us to try to invent
the Master Algorithm even if the odds of success were low. And even if it takes
a long time, searching for a universal learner has many immediate benefits. One
is the better understanding of machine learning that a unified view enables. Too
many business decisions are made with scant understanding of the analytics
underpinning them, but it doesn’t have to be that way. To use a technology, we
don’t need to master its inner workings, but we do need to have a good
conceptual model of it. We need to know how to find a station on the radio, or
change the volume. Today, those of us who aren’t machine-learning experts
have no conceptual model of what a learner does. The algorithms we drive when
we use Google, Facebook, or the latest analytics suite are a bit like a black limo
with tinted windows that mysteriously shows up at our door one night: Should

we get in? Where will it take us? It’s time to get in the driver’s seat. Knowing
the assumptions that different learners make will help us pick the right one for
the job, instead of going with a random one that fell into our lap—and then
suffering with it for years, painfully rediscovering what we should have known
from the start. By knowing what learners optimize, we can make certain they
optimize what we care about, rather than what came in the box. Perhaps most
important, once we know how a particular learner arrives at its conclusions,
we’ll know what to make of that information—what to believe, what to return to
the manufacturer, and how to get a better result next time around. And with the
universal learner we’ll develop in this book as the conceptual model, we can do
all this without cognitive overload. Machine learning is simple at heart; we just
need to peel away the layers of math and jargon to reveal the innermost Russian
doll.

These benefits apply in both our personal and professional lives. How do 1
make the best of the trail of data that my every step in the modern world leaves?
Every transaction works on two levels: what it accomplishes for you and what it
teaches the system you just interacted with. Being aware of this is the first step
to a happy life in the twenty-first century. Teach the learners, and they will serve
you; but first you need to understand them. What in my job can be done by a
learning algorithm, what can’t, and—most important—how can I take advantage
of machine learning to do it better? The computer is your tool, not your
adversary. Armed with machine learning, a manager becomes a supermanager, a
scientist a superscientist, an engineer a superengineer. The future belongs to
those who understand at a very deep level how to combine their unique expertise
with what algorithms do best.

But perhaps the Master Algorithm is a Pandora’s box best left closed. Will
computers enslave us or even exterminate us? Will machine learning be the
handmaiden of dictators or evil corporations? Knowing where machine learning
is headed will help us to understand what to worry about, what not, and what to
do about it. The Terminator scenario, where a super-Al becomes sentient and
subdues mankind with a robot army, has no chance of coming to pass with the
kinds of learning algorithms we’ll meet in this book. Just because computers can
learn doesn’t mean they magically acquire a will of their own. Learners learn to
achieve the goals we set them; they don’t get to change the goals. Rather, we
need to worry about them trying to serve us in ways that do more harm than
good because they don’t know any better, and the cure for that is to teach them
better.

Most of all, we have to worry about what the Master Algorithm could do in
the wrong hands. The first line of defense is to make sure the good guys get it
first—or, if it’s not clear who the good guys are, to make sure it’s open-sourced.
The second is to realize that, no matter how good the learning algorithm is, it’s
only as good as the data it gets. He who controls the data controls the learner.
Your reaction to the datafication of life should not be to retreat to a log cabin—
the woods, too, are full of sensors—but to aggressively seek control of the data
that matters to you. It’s good to have recommenders that find what you want and
bring it to you; you’d feel lost without them. But they should bring you what you
want, not what someone else wants you to have. Control of data and ownership
of the models learned from it is what many of the twenty-first century’s battles
will be about—between governments, corporations, unions, and individuals. But
you also have an ethical duty to share data for the common good. Machine
learning alone will not cure cancer; cancer patients will, by sharing their data for
the benefit of future patients.

A different theory of everything

Science today is thoroughly balkanized, a Tower of Babel where each
subcommunity speaks its own jargon and can see only into a few adjacent
subcommunities. The Master Algorithm would provide a unifying view of all of
science and potentially lead to a new theory of everything. At first this may seem
like an odd claim. What machine learning does is induce theories from data.
How could the Master Algorithm itself grow into a theory? Isn’t string theory
the theory of everything, and the Master Algorithm nothing like it?

To answer these questions, we have to first understand what a scientific
theory is and is not. A theory is a set of constraints on what the world could be,
not a complete description of it. To obtain the latter, you have to combine the
theory with data. For example, consider Newton’s second law. It says that force
equals mass times acceleration, or F = ma. It does not say what the mass or
acceleration of any object are, or the forces acting on it. It only requires that, if
the mass of an object is m and its acceleration is a, then the total force on it must
be ma. It removes some of the universe’s degrees of freedom, but not all. The
same is true of all other physical theories, including relativity, quantum
mechanics, and string theory, which are, in effect, refinements of Newton’s laws.

The power of a theory lies in how much it simplifies our description of the

world. Armed with Newton’s laws, we only need to know the masses, positions,
and velocities of all objects at one point in time; their positions and velocities at
all times follow. So Newton’s laws reduce our description of the world by a
factor of the number of distinguishable instants in the history of the universe,
past and future. Pretty amazing! Of course, Newton’s laws are only an
approximation of the true laws of physics, so let’s replace them with string
theory, ignoring all its problems and the question of whether it can ever be
empirically validated. Can we do better? Yes, for two reasons.

The first is that, in reality, we never have enough data to completely
determine the world. Even ignoring the uncertainty principle, precisely knowing
the positions and velocities of all particles in the world at some point in time is
not remotely feasible. And because the laws of physics are chaotic, uncertainty
compounds over time, and pretty soon they determine very little indeed. To
accurately describe the world, we need a fresh batch of data at regular intervals.
In effect, the laws of physics only tell us what happens locally. This drastically
reduces their power.

The second problem is that, even if we had complete knowledge of the world
at some point in time, the laws of physics would still not allow us to determine
its past and future. This is because the sheer amount of computation required to
make those predictions would be beyond the capabilities of any imaginable
computer. In effect, to perfectly simulate the universe we would need another,
identical universe. This is why string theory is mostly irrelevant outside of
physics. The theories we have in biology, psychology, sociology, or economics
are not corollaries of the laws of physics; they had to be created from scratch.
We assume that they are approximations of what the laws of physics would
predict when applied at the scale of cells, brains, and societies, but there’s no
way to know.

Unlike the theories of a given field, which only have power within that field,
the Master Algorithm has power across all fields. Within field X, it has less
power than field X’s prevailing theory, but across all fields—when we consider
the whole world—it has vastly more power than any other theory. The Master
Algorithm is the germ of every theory; all we need to add to it to obtain theory X
is the minimum amount of data required to induce it. (In the case of physics, that
would be just the results of perhaps a few hundred key experiments.) The upshot
is that, pound for pound, the Master Algorithm may well be the best starting
point for a theory of everything we’ll ever have. Pace Stephen Hawking, it may
ultimately tell us more about the mind of God than string theory.

Some may say that seeking a universal learner is the epitome of techno-
hubris. But dreaming is not hubris. Maybe the Master Algorithm will take its
place among the great chimeras, alongside the philosopher’s stone and the
perpetual motion machine. Or perhaps it will be more like finding the longitude
at sea, given up as too difficult until a lone genius solved it. More likely, it will
be the work of generations, raised stone by stone like a cathedral. The only way
to find out is to get up early one day and set out on the journey.

Candidates that don’t make the cut

So, if the Master Algorithm exists, what is it? A seemingly obvious candidate is
memorization: just remember everything you’ve seen; after a while you’ll have
seen everything there is to see, and therefore know everything there is to know.
The problem with this is that, as Heraclitus said, you never step in the same river
twice. There’s far more to see than you ever could. No matter how many
snowflakes you’ve examined, the next one will be different. Even if you had
been present at the Big Bang and everywhere since, you would still have seen
only a tiny fraction of what you could see in the future. If you had witnessed life
on Earth up to ten thousand years ago, that would not have prepared you for
what was to come. Someone who grew up in one city doesn’t become paralyzed
when they move to another, but a robot capable only of memorization would.
Besides, knowledge is not just a long list of facts. Knowledge is general, and has
structure. “All humans are mortal” is much more succinct than seven billion
statements of mortality, one for each human. Memorization gives us none of
these things.

Another candidate Master Algorithm is the microprocessor. After all, the one
in your computer can be viewed as a single algorithm whose job is to execute
other algorithms, like a universal Turing machine; and it can run any imaginable
algorithm, up to its limits of memory and speed. In effect, to a microprocessor an
algorithm is just another kind of data. The problem here is that, by itself, the
microprocessor doesn’t know how to do anything; it just sits there idle all day.
Where do the algorithms it runs come from? If they were coded up by a human
programmer, no learning is involved. Nevertheless, there’s a sense in which the
microprocessor is a good analog for the Master Algorithm. A microprocessor is
not the best hardware for running any particular algorithm. That would be an
ASIC (application-specific integrated circuit) designed very precisely for that

algorithm. Yet microprocessors are what we use for almost all applications,
because their flexibility trumps their relative inefficiency. If we had to build an
ASIC for every new application, the Information Revolution would never have
happened. Similarly, the Master Algorithm is not the best algorithm for learning
any particular piece of knowledge; that would be an algorithm that already
encodes most of that knowledge (or all of it, making the data superfluous). The
point, however, is to induce the knowledge from data, because it’s easier and
costs less; so the more general the learning algorithm, the better.

An even more extreme candidate is the humble NOR gate: a logic switch
whose output is 1 only if its inputs are both 0. Recall that all computers are made
of logic gates built out of transistors, and all computations can be reduced to
combinations of AND, OR, and NOT gates. A NOR gate is just an OR gate
followed by a NOT gate: the negation of a disjunction, as in “I’m happy as long
as I’'m not starving or sick.” AND, OR and NOT can all be implemented using
NOR gates, so NOR can do everything, and in fact it’s all some microprocessors
use. So why can’t it be the Master Algorithm? It’s certainly unbeatable for
simplicity. Unfortunately, a NOR gate is not the Master Algorithm any more
than a Lego brick is the universal toy. It can certainly be a universal building
block for toys, but a pile of Legos doesn’t spontaneously assemble itself into a
toy. The same applies to other simple computation schemes, like Petri nets or
cellular automata.

Moving on to more sophisticated alternatives, what about the queries that
any good database engine can answer, or the simple algorithms in a statistical
package? Aren’t those enough? These are bigger Lego bricks, but they’re still
only bricks. A database engine never discovers anything new; it just tells you
what it knows. Even if all the humans in a database are mortal, it doesn’t occur
to it to generalize mortality to other humans. (Database engineers would blanch
at the thought.) Much of statistics is about testing hypotheses, but someone has
to formulate them in the first place. Statistical packages can do linear regression
and other simple procedures, but these have a very low limit on what they can
learn, no matter how much data you feed them. The better packages cross into
the gray zone between statistics and machine learning, but there are still many
kinds of knowledge they can’t discover.

OK, it’s time to come clean: the Master Algorithm is the equation U(X) = 0.
Not only does it fit on a T-shirt; it fits on a postage stamp. Huh? U(X) = 0 just
says that some (possibly very complex) function U of some (possibly very
complex) variable X is equal to 0. Every equation can be reduced to this form;

for example, F = ma is equivalent to F — ma = 0, so if you think of F — ma as a
function U of F, voila: U(F) = 0. In general, X could be any input and U could be
any algorithm, so surely the Master Algorithm can’t be any more general than
this; and since we’re looking for the most general algorithm we can find, this
must be it. I’m just kidding, of course, but this particular failed candidate points
to a real danger in machine learning: coming up with a learner that’s so general,
it doesn’t have enough content to be useful.

So what’s the least content a learner can have in order to be useful? How
about the laws of physics? After all, everything in the world obeys them (we
believe), and they gave rise to evolution and (through it) the brain. Well, perhaps
the Master Algorithm is implicit in the laws of physics, but if so, then we need to
make it explicit. Just throwing data at the laws of physics won’t result in any
new laws. Here’s one way to think about it: perhaps some field’s master theory
is just the laws of physics compiled into a more convenient form for that field,
but if so then we need an algorithm that finds a shortcut from that field’s data to
its theory, and it’s not clear the laws of physics can be of any help with this.
Another issue is that, if the laws of physics were different, the Master Algorithm
would presumably still be able to discover them in many cases. Mathematicians
like to say that God can disobey the laws of physics, but even he cannot defy the
laws of logic. This may be so, but the laws of logic are for deduction; what we
need is something equivalent, but for induction.

The five tribes of machine learning

Of course, we don’t have to start from scratch in our hunt for the Master
Algorithm. We have a few decades of machine learning research to draw on.
Some of the smartest people on the planet have devoted their lives to inventing
learning algorithms, and some would even claim that they already have a
universal learner in hand. We will stand on the shoulders of these giants, but take
such claims with a grain of salt. Which raises the question: how will we know
when we’ve found the Master Algorithm? When the same learner, with only
parameter changes and minimal input aside from the data, can understand video
and text as well as humans, and make significant new discoveries in biology,
sociology, and other sciences. Clearly, by this standard no learner has yet been
demonstrated to be the Master Algorithm, even in the unlikely case one already
exists.

Crucially, the Master Algorithm is not required to start from scratch in each
new problem. That bar is probably too high for any learner to meet, and it’s
certainly very unlike what people do. For example, language does not exist in a
vacuum; we couldn’t understand a sentence without our knowledge of the world
it refers to. Thus, when learning to read, the Master Algorithm can rely on
having previously learned to see, hear, and control a robot. Likewise, a scientist
does not just blindly fit models to data; he can bring all his knowledge of the
field to bear on the problem. Therefore, when making discoveries in biology, the
Master Algorithm can first read all the biology it wants, relying on having
previously learned to read. The Master Algorithm is not just a passive consumer
of data; it can interact with its environment and actively seek the data it wants,
like Adam, the robot scientist, or like any child exploring her world.

Our search for the Master Algorithm is complicated, but also enlivened, by
the rival schools of thought that exist within machine learning. The main ones
are the symbolists, connectionists, evolutionaries, Bayesians, and analogizers.
Each tribe has a set of core beliefs, and a particular problem that it cares most
about. It has found a solution to that problem, based on ideas from its allied
fields of science, and it has a master algorithm that embodies it.

For symbolists, all intelligence can be reduced to manipulating symbols, in
the same way that a mathematician solves equations by replacing expressions by
other expressions. Symbolists understand that you can’t learn from scratch: you
need some initial knowledge to go with the data. They’ve figured out how to
incorporate preexisting knowledge into learning, and how to combine different
pieces of knowledge on the fly in order to solve new problems. Their master
algorithm is inverse deduction, which figures out what knowledge is missing in
order to make a deduction go through, and then makes it as general as possible.

For connectionists, learning is what the brain does, and so what we need to
do is reverse engineer it. The brain learns by adjusting the strengths of
connections between neurons, and the crucial problem is figuring out which
connections are to blame for which errors and changing them accordingly. The
connectionists’ master algorithm is backpropagation, which compares a system’s
output with the desired one and then successively changes the connections in
layer after layer of neurons so as to bring the output closer to what it should be.

Evolutionaries believe that the mother of all learning is natural selection. If it
made us, it can make anything, and all we need to do is simulate it on the
computer. The key problem that evolutionaries solve is learning structure: not
just adjusting parameters, like backpropagation does, but creating the brain that

those adjustments can then fine-tune. The evolutionaries’ master algorithm is
genetic programming, which mates and evolves computer programs in the same
way that nature mates and evolves organisms.

Bayesians are concerned above all with uncertainty. All learned knowledge
is uncertain, and learning itself is a form of uncertain inference. The problem
then becomes how to deal with noisy, incomplete, and even contradictory
information without falling apart. The solution is probabilistic inference, and the
master algorithm is Bayes’ theorem and its derivates. Bayes’ theorem tells us
how to incorporate new evidence into our beliefs, and probabilistic inference
algorithms do that as efficiently as possible.

For analogizers, the key to learning is recognizing similarities between
situations and thereby inferring other similarities. If two patients have similar
symptoms, perhaps they have the same disease. The key problem is judging how
similar two things are. The analogizers’ master algorithm is the support vector
machine, which figures out which experiences to remember and how to combine
them to make new predictions.

Each tribe’s solution to its central problem is a brilliant, hard-won advance.
But the true Master Algorithm must solve all five problems, not just one. For
example, to cure cancer we need to understand the metabolic networks in the
cell: which genes regulate which others, which chemical reactions the resulting
proteins control, and how adding a new molecule to the mix would affect the
network. It would be silly to try to learn all of this from scratch, ignoring all the
knowledge that biologists have painstakingly accumulated over the decades.
Symbolists know how to combine this knowledge with data from DNA
sequencers, gene expression microarrays, and so on, to produce results that you
couldn’t get with either alone. But the knowledge we obtain by inverse
deduction is purely qualitative; we need to learn not just who interacts with
whom, but how much, and backpropagation can do that. Nevertheless, both
inverse deduction and backpropagation would be lost in space without some
basic structure on which to hang the interactions and parameters they find, and
genetic programming can discover it. At this point, if we had complete
knowledge of the metabolism and all the data relevant to a given patient, we
could figure out a treatment for her. But in reality the information we have is
always very incomplete, and even incorrect in places; we need to make headway
despite that, and that’s what probabilistic inference is for. In the hardest cases,
the patient’s cancer looks very different from previous ones, and all our learned
knowledge fails. Similarity-based algorithms can save the day by seeing

analogies between superficially very different situations, zeroing in on their
essential similarities and ignoring the rest.
In this book we will synthesize a single algorithm will all these capabilities:

Evolutionaries

Evolving Structures

Y

A

Learning Parameters Connectionists

'
A

Composing Elements
on the Fly

Symbolists

Y
A

Weighing Evidence esians
|

B e

2

Mapping to New
Situations

Our quest will take us across the territory of each of the five tribes. The border
crossings, where they meet, negotiate and skirmish, will be the trickiest part of
the journey. Each tribe has a different piece of the puzzle, which we must gather.
Machine learners, like all scientists, resemble the blind men and the elephant:
one feels the trunk and thinks it’s a snake, another leans against the leg and
thinks it’s a tree, yet another touches the tusk and thinks it’s a bull. Our aim is to
touch each part without jumping to conclusions; and once we’ve touched all of
them, we will try to picture the whole elephant. It’s far from obvious how to
combine all the pieces into one solution—impossible, according to some—but
this is what we will do.

The algorithm we’ll arrive at is not yet the Master Algorithm, for reasons
we’ll see, but it’s the closest anyone has come. And we’ll gather enough riches
along the way to make Croesus envious. Nevertheless, this book is only part one
of the Master Algorithm saga. Part two’s protagonist is you, dear reader. Your
mission, should you choose to accept it, is to go the rest of the way and bring
back the prize. I will be your humble guide in part one, from here to the edge of
the known world. Do I hear you protest that you don’t know enough, or
algorithms are not your forte? Fear not. Computer science is still young, and
unlike in physics or biology, you don’t need a PhD to start a revolution. (Just ask
Bill Gates, Messrs. Sergey Brin and Larry Page, or Mark Zuckerberg.) Insight
and persistence are what counts.

Are you ready? Our journey begins with a visit to the symbolists, the tribe
with the oldest roots.

CHAPTER THREE

fe

Hume’s Problem of Induction

Are you a rationalist or an empiricist?

Rationalists believe that the senses deceive and that logical reasoning is the
only sure path to knowledge. Empiricists believe that all reasoning is fallible and
that knowledge must come from observation and experimentation. The French
are rationalists; the Anglo-Saxons (as the French call them) are empiricists.
Pundits, lawyers, and mathematicians are rationalists; journalists, doctors, and
scientists are empiricists. Murder, She Wrote is a rationalist TV crime show;
CSI: Crime Scene Investigation is an empiricist one. In computer science,
theorists and knowledge engineers are rationalists; hackers and machine learners
are empiricists.

The rationalist likes to plan everything in advance before making the first
move. The empiricist prefers to try things and see how they turn out. I don’t
know if there’s a gene for rationalism or one for empiricism, but looking at my
computer scientist colleagues, I’ve observed time and again that they are almost
like personality traits: some people are rationalistic to the core and could never
have been otherwise; and others are empiricist through and through, and that’s
what they’ll always be. The two sides can converse with each other and
sometimes draw on each other’s results, but they can understand each other only
so much. Deep down each believes that what the other does is secondary, and
not very interesting.

Rationalists and empiricists have probably been around since the dawn of
Homo sapiens. Before setting out on a hunt, Caveman Bob spent a long time

sitting in his cave figuring out where the game would be. In the meantime,
Cavewoman Alice was out systematically surveying the territory. Since both
kinds are still with us, it’s probably safe to say that neither approach was better.
You might think that machine learning is the final triumph of the empiricists, but
the truth is more subtle, as we’ll soon see.

Rationalism versus empiricism is a favorite question of philosophers. Plato
was an early rationalist, and Aristotle an early empiricist. But the debate really
took off during the Enlightenment, with a trio of great thinkers on each side:
Descartes, Spinoza, and Leibniz were the leading rationalists; Locke, Berkeley,
and Hume were their empiricist counterparts. Trusting in their powers of
reasoning, the rationalists concocted theories of the universe that—to put it
gently—did not stand the test of time, but they also invented fundamental
mathematical techniques like calculus and analytical geometry. The empiricists
were altogether more practical, and their influence is everywhere from the
scientific method to the Constitution of the United States.

David Hume was the greatest of the empiricists and the greatest English-
speaking philosopher of all time. Thinkers like Adam Smith and Charles Darwin
count him among their key influences. You could also say he’s the patron saint
of the symbolists. He was born in Scotland in 1711 and spent most of his life in
eighteenth-century Edinburgh, a prosperous city full of intellectual ferment. A
man of genial disposition, he was nevertheless an exacting skeptic who spent
much of his time debunking the myths of his age. He also took the empiricist
train of thought that Locke had started to its logical conclusion and asked a
question that has since hung like a sword of Damocles over all knowledge, from
the most trivial to the most advanced: How can we ever be justified in
generalizing from what we’ve seen to what we haven’t? Every learning
algorithm is, in a sense, an attempt to answer this question.

Hume’s question is also the departure point for our journey. We’ll start by
illustrating it with an example from daily life and meeting its modern
embodiment in the famous “no free lunch” theorem. Then we’ll see the
symbolists’ answer to Hume. This leads us to the most important problem in
machine learning: overfitting, or hallucinating patterns that aren’t really there.
We’ll see how the symbolists solve it, and how machine learning is at heart a
kind of alchemy, transmuting data into knowledge with the aid of a
philosopher’s stone. For the symbolists, the philosopher’s stone is knowledge
itself. In the next four chapters we’ll study the solutions of the other tribes’
alchemists.

To date or not to date?

You have a friend you really like, and you want to ask her out on a date. You
have a hard time dealing with rejection, though, and you’re only going to ask her
if you’re pretty sure she’ll say yes. It’s Friday evening, and there you sit with
cell phone in hand, trying to decide whether or not to call her. You remember
that the previous time you asked her, she said no. But why? Two times before
that she said yes, and the one before those she said no. Maybe there are days she
doesn’t like to go out? Or maybe she likes clubbing but not dinner dates? Being
of an unusually systematic nature, you put down the phone and jot down what
you can remember about those previous occasions:

Occasion Dayof Typeof = Weather TV Tonight Date?
Week Date
1 Weekday — Dinner Warm Bad No
2 Weekend Club Warm Bad Yes
3 Weekend Club Warm Bad Yes
4 Weekend Club Cold Good No
Today Weekend Club Cold Bad ?

So ... what shall it be? Date or no date? Is there a pattern that distinguishes
the yeses from the nos? And, most important, what does that pattern say about
today?

Clearly, there’s no single factor that correctly predicts the answer: on some
weekends she likes to go out, and on some she doesn’t; sometimes she likes to
go clubbing, and sometimes she doesn’t, and so on. What about a combination of
factors? Maybe she likes to go clubbing on weekends? No, occasion number 4
crosses that one out. Or maybe she only likes to go out on warm weekend
nights? Bingo! That works! In which case, looking at the frosty weather outside,
tonight doesn’t look promising. But wait! What if she likes to go clubbing when
there’s nothing good on TV? That also works, and that means today is a yes!
Quick, call her before it gets too late. But wait a second. How do you know this
is the right pattern? You’ve found two that agree with your previous experience,
but they make opposite predictions. Come to think of it, what if she only goes
clubbing when the weather is nice? Or she goes out on weekends when there’s
nothing to watch on TV? Or—

At this point you crumple your notes in frustration and fling them into the
wastebasket. There’s no way to know! What can you do? The ghost of Hume

nods sadly over your shoulder. You have no basis to pick one generalization over
another. Yes and no are equally legitimate answers to the question “What will
she say?” And the clock is ticking. Bitterly, you fish out a quarter from your
pocket and prepare to flip it.

You’re not the only one in dire straits—so are we. We’ve only just set out on
our road to the Master Algorithm and already we seem to have run into an
insurmountable obstacle. Is there any way to learn something from the past that
we can be confident will apply in the future? And if there isn’t, isn’t machine
learning a hopeless enterprise? For that matter, isn’t all of science, even all of
human knowledge, on rather shaky ground?

It’s not like big data would solve the problem. You could be super-Casanova
and have dated millions of women thousands of times each, but your master
database still wouldn’t answer the question of what this woman is going to say
this time. Even if today is exactly like some previous occasion when she said yes
—same day of week, same type of date, same weather, and same shows on TV
—that still doesn’t mean that this time she will say yes. For all you know, her
answer is determined by some factor that you didn’t think of or don’t have
access to. Or maybe there’s no rhyme or reason to her answers: they’re random,
and you’re just spinning your wheels trying to find a pattern in them.

Philosophers have debated Hume’s problem of induction ever since he posed
it, but no one has come up with a satisfactory answer. Bertrand Russell liked to
illustrate the problem with the story of the inductivist turkey. On his first
morning at the farm, the turkey was fed at 9:00 a.m., but being a good
inductivist, he didn’t jump to conclusions. He first collected many observations
on many different days under many different circumstances. Having been fed
consistently at 9:00 a.m. for many consecutive days, he finally concluded that
yes, he would always be fed at 9:00 a.m. Then came the morning of Christmas
eve, and his throat was cut.

It would be nice if Hume’s problem was just a cute philosophical conundrum
we could ignore, but we can’t. For example, Google’s business is based on
guessing which web pages you’re looking for when you type some keywords
into the search box. Their key asset is massive logs of search queries people
have entered in the past and the links they clicked on in the corresponding results
pages. But what do you do if someone types in a combination of keywords that’s
not in the log? And even if it is, how can you be confident that the current user
wants the same pages as the previous ones?

How about we just assume that the future will be like the past? This is

certainly a risky assumption. (It didn’t work for the inductivist turkey.) On the
other hand, without it all knowledge is impossible, and so is life. We’d rather
stay alive, even if precariously. Unfortunately, even with that assumption we’re
not out of the woods. It takes care of the “trivial” cases: If I'm a doctor and
patient B has exactly the same symptoms as patient A, I assume that the
diagnosis is the same. But if patient B’s symptoms don’t exactly match anyone
else’s, I'm still in the dark. This is the machine-learning problem: generalizing to
cases that we haven’t seen before.

But perhaps that’s not such a big deal? With enough data, won’t most cases
be in the “trivial” category? No. We saw in the previous chapter why
memorization won’t work as a universal learner, but now we can make it more
quantitative. Suppose you have a database with a trillion records, each with a
thousand Boolean fields (i.e., each field is the answer to a yes/no question).
That’s pretty big. What fraction of the possible cases have you seen? (Take a
guess before you read on.) Well, the number of possible answers is two for each
question, so for two questions it’s two times two (yes-yes, yes-no, no-yes, and

no-no), for three questions it’s two cubed (2 x 2 x 2 = 23), and for a thousand
questions it’s two raised to the power of a thousand (21000). The trillion records

in your database are one-gazillionth of 1 percent of 21000, where “gazillionth”
means “zero point 286 zeros followed by 1.” Bottom line: no matter how much
data you have—tera- or peta- or exa- or zetta- or yottabytes—you’ve basically
seen nothing. The chances that the new case you need to make a decision on is
already in the database are so vanishingly small that, without generalization, you
won’t even get off the ground.

If this all sounds a bit abstract, suppose you’re a major e-mail provider, and
you need to label each incoming e-mail as spam or not spam. You may have a
database of a trillion past e-mails, each already labeled as spam or not, but that
won’t save you, since the chances that every new e-mail will be an exact copy of
a previous one are just about zero. You have no choice but to try to figure out at
a more general level what distinguishes spam from nonspam. And, according to
Hume, there’s no way to do that.

The “no free lunch” theorem

Two hundred and fifty years after Hume set off his bombshell, it was given

elegant mathematical form by David Wolpert, a physicist turned machine
learner. His result, known as the “no free lunch” theorem, sets a limit on how
good a learner can be. The limit is pretty low: no learner can be better than
random guessing! OK, we can go home: the Master Algorithm is just flipping
coins. Seriously, though, how is it that no learner can beat coin flipping? And if
that’s so, how come the world is full of highly successful learners, from spam
filters to (any day now) self-driving cars?

The “no free lunch” theorem is a lot like the reason Pascal’s wager fails. In
his Pensées, published in 1669, Pascal said we should believe in the Christian
God because if he exists that gains us eternal life, and if he doesn’t we lose very
little. This was a remarkably sophisticated argument for the time, but as Diderot
pointed out, an imam could make the same argument for believing in Allah. And
if you pick the wrong god, the price you pay is eternal hell. On balance,
considering the wide variety of possible gods, you’re no better off picking a
particular one to believe in than you are picking any other. For every god that
says “do this,” there’s another that says “no, do that.” You may as well just
forget about god and enjoy life without religious constraints.

Replace “god” with “learning algorithm” and “eternal life” with “accurate
prediction,” and you have the “no free lunch” theorem. Pick your favorite
learner. (We’ll see many in this book.) For every world where it does better than
random guessing, I, the devil’s advocate, will deviously construct one where it
does worse by the same amount. All I have to do is flip the labels of all unseen
instances. Since the labels of the observed ones agree, there’s no way your
learner can distinguish between the world and the antiworld. On average over
the two, it’s as good as random guessing. And therefore, on average over all
possible worlds, pairing each world with its antiworld, your learner is equivalent
to flipping coins.

Don’t give up on machine learning or the Master Algorithm just yet, though.
We don’t care about all possible worlds, only the one we live in. If we know
something about the world and incorporate it into our learner, it now has an
advantage over random guessing. To this Hume would reply that that knowledge
must itself have come from induction and is therefore fallible. That’s true, even
if the knowledge was encoded into our brains by evolution, but it’s a risk we’ll
have to take. We can also ask whether there’s a nugget of knowledge so
incontestable, so fundamental, that we can build all induction on top of it.
(Something like Descartes’ “I think, therefore I am,” although it’s hard to see
how to turn that one into a learning algorithm.) I think the answer is yes, and

we’ll see what that nugget is in Chapter 9.

In the meantime, the practical consequence of the “no free lunch” theorem is
that there’s no such thing as learning without knowledge. Data alone is not
enough. Starting from scratch will only get you to scratch. Machine learning is a
kind of knowledge pump: we can use it to extract a lot of knowledge from data,
but first we have to prime the pump.

Machine learning is what mathematicians call an ill-posed problem: it
doesn’t have a unique solution. Here’s a simple ill-posed problem: Which two
numbers add up to 1,000? Assuming the numbers are positive, there are five
hundred possible answers: 1 and 999, 2 and 998, and so on. The only way to
solve an ill-posed problem is to introduce additional assumptions. If I tell you
the second number is triple the first, bingo: the answer is 250 and 750.

Tom Mitchell, a leading symbolist, calls it “the futility of bias-free learning.”
In ordinary life, bias is a pejorative word: preconceived notions are bad. But in
machine learning, preconceived notions are indispensable; you can’t learn
without them. In fact, preconceived notions are also indispensable to human
cognition, but they’re hardwired into the brain, and we take them for granted.
It’s biases over and beyond those that are questionable.

Aristotle said that there is nothing in the intellect that was not first in the
senses. Leibniz added, “Except the intellect itself.” The human brain is not a
blank slate because it’s not a slate. A slate is passive, something you write on,
but the brain actively processes the information it receives. Memory is the slate
it writes on, and it does start out blank. On the other hand, a computer is a blank
slate until you program it; the active process itself has to be written into memory
before anything can happen. Our goal is to figure out the simplest program we
can write such that it will continue to write itself by reading data, without limit,
until it knows everything there is to know.

Machine learning has an unavoidable element of gambling. In the first Dirty
Harry movie, Clint Eastwood chases a bank robber, repeatedly firing at him.
Finally, the robber is lying next to a loaded gun, unsure whether to spring for it.
Did Harry fire six shots or only five? Harry sympathizes (so to speak): “You’ve
got to ask yourself one question: ‘Do I feel lucky?’ Well, do you, punk?” That’s
the question machine learners have to ask themselves every day when they go to
work: Do I feel lucky today? Just like evolution, machine learning doesn’t get it
right every time; in fact, errors are the rule, not the exception. But it’s OK,
because we discard the misses and build on the hits, and the cumulative result is
what matters. Once we acquire a new piece of knowledge, it becomes a basis for

inducing yet more knowledge. The only question is where to begin.

Priming the knowledge pump

In the Principia, along with his three laws of motion, Newton enunciates four
rules of induction. Although these are much less well known than the physical
laws, they are arguably as important. The key rule is the third one, which we can
paraphrase thus:

Newton’s Principle: Whatever is true of everything we’ve seen is true of
everything in the universe.

It’s not an exaggeration to say that this innocuous-sounding statement is at
the heart of the Newtonian revolution and of modern science. Kepler’s laws
applied to exactly six entities: the planets of the solar system known in his time.
Newton’s laws apply to every last speck of matter in the universe. The leap in
generality between the two is staggering, and it’s a direct consequence of
Newton’s principle. This one principle is all by itself a knowledge pump of
phenomenal power. Without it there would be no laws of nature, only a forever
incomplete patchwork of small regularities.

Newton’s principle is the first unwritten rule of machine learning. We induce
the most widely applicable rules we can and reduce their scope only when the
data forces us to. At first sight this may seem ridiculously overconfident, but it’s
been working for science for over three hundred years. It’s certainly possible to
imagine a universe so varied and capricious that Newton’s principle would
systematically fail, but that’s not our universe.

Newton’s principle is only the first step, however. We still need to figure out
what is true of everything we’ve seen—how to extract the regularities from the
raw data. The standard solution is to assume we know the form of the truth, and
the learner’s job is to flesh it out. For example, in the dating problem you could
assume that your friend’s answer is determined by a single factor, in which case
learning just consists of checking each known factor (day of week, type of date,
weather, and TV programming) to see if it correctly predicts her answer every
time. The problem, of course, is that none of them do! You gambled and failed.
So you relax your assumptions a bit. What if your friend’s answer is determined
by a conjunction of two factors? With four factors, each with two possible

values, there are twenty-four possibilities to check (six pairs of factors to pick
from times two choices for each factor’s value). Now we have an embarrassment
of riches: four conjunctions of two factors correctly predict the outcome! What
to do? If you’re feeling lucky, you can just pick one of them and hope for the
best. A more sensible option, though, is democracy: let them vote, and pick the
winning prediction.

If all conjunctions of two factors fail, you can try all conjunctions of any
number of factors. Machine learners and psychologists call these “conjunctive
concepts.” Dictionary definitions are conjunctive concepts: a chair has a seat and
a back and some number of legs. Remove any of these and it’s no longer a chair.
A conjunctive concept is what Tolstoy had in mind when he wrote the opening
sentence of Anna Karenina: “All happy families are alike; each unhappy family
is unhappy in its own way.” The same is true of individuals. To be happy, you
need health, love, friends, money, a job you like, and so on. Take any of these
away, and misery ensues.

In machine learning, examples of a concept are called positive examples, and
counterexamples are called negative examples. If you’re trying to learn to
recognize cats in images, images of cats are positive examples and images of
dogs are negative ones. If you compiled a database of families from the world’s
literature, the Karenins would be a negative example of a happy family, and
there would be precious few positive examples.

Starting with restrictive assumptions and gradually relaxing them if they fail
to explain the data is typical of machine learning, and the process is usually
carried out automatically by the learner, without any help from you. First, it tries
all single factors, then all conjunctions of two factors, then all conjunctions of
three, and so on. But now we run into a problem: there are a lot of conjunctive
concepts and not enough time to try them all out.

The dating example is a little deceptive because it’s very small (four
variables and four examples). But suppose now that you run an online dating
service and you need to figure out which couples to match. If each user of your
system has filled out a questionnaire with answers to fifty yes/no questions, each
potential match is characterized by one hundred attributes, fifty from each
member of the prospective couple. Based on the couples that have gone on a
date and reported the outcome, can you find a conjunctive definition for the

concept of a “good match”? There are 3100 possible definitions to try. (The
three options for each attribute are yes, no, and not part of the concept.) Even
with the fastest computer in the world, the couples will all be long gone—and

your company bankrupt—by the time you’re done, unless you’re lucky and a
very short definition hits the jackpot. So many rules, so little time. We need to
do something smarter.

Here’s one way. Suspend your disbelief and start by assuming that all
matches are good. Then try excluding all matches that don’t have some attribute.
Repeat this for each attribute, and choose the one that excludes the most bad
matches and the fewest good ones. Your definition now looks something like,
say, “It’s a good match only if he’s outgoing.” Now try adding every other
attribute to that in turn, and choose the one that excludes the most remaining bad
matches and fewest remaining good ones. Perhaps the definition is now “It’s a
good match only if he’s outgoing and so is she.” Try adding a third attribute to
those two, and so on. Once you’ve excluded all the bad matches, you’re done:
you have a definition of the concept that includes all the positive examples and
excludes all the negative ones. For example: “A couple is a good match only if
they’re both outgoing, he’s a dog person, and she’s not a cat person.” You can
now throw away the data and keep only this definition, since it encapsulates all
that’s relevant for your purposes. This algorithm is guaranteed to finish in a
reasonable amount of time, and it’s also the first actual learner we meet in this
book!

How to rule the world

Conjunctive concepts don’t get you very far, though. The problem is that, as
Rudyard Kipling said, “There are nine and sixty ways of constructing tribal lays,
and every one of them is right.” Real concepts are disjunctive. Chairs can have
four legs or one, and sometimes none. You can win at chess in countless
different ways. E-mails containing the word Viagra are probably spam, but so
are e-mails containing “FREE!!!” Besides, all rules have exceptions. Some
families manage to be dysfunctional yet happy. Birds fly, unless they’re
penguins, ostriches, cassowaries, or kiwis (or they’ve broken a wing, or are
locked in a cage, or...).

What we need is to learn concepts that are defined by a set of rules, not just a
single rule, such as:

If you liked Star Wars, episodes IV-VI, you’ll like Avatar.
If you liked Star Trek: The Next Generation and Titanic, you’ll like Avatar.

If you’re a member of the Sierra Club and read science-fiction books, you’ll
like Avatar.
Or:

If your credit card was used in China, Canada, and Nigeria yesterday, it was
stolen.

If your credit card was used twice after 11:00 p.m. on a weekday, it was
stolen.

If your credit card was used to purchase one dollar of gas, it was stolen.

(If you’re wondering about the last rule, credit-card thieves used to routinely
buy one dollar of gas to check that a stolen credit card was good before data
miners caught on to the tactic.)

We can learn sets of rules like this one rule at a time, using the algorithm we
saw before for learning conjunctive concepts. After we learn each rule, we
discard the positive examples that it accounts for, so the next rule tries to
account for as many of the remaining positive examples as possible, and so on
until all are accounted for. It’s an example of “divide and conquer,” the oldest
strategy in the scientist’s playbook. We can also improve the algorithm for
finding a single rule by keeping some number n of hypotheses around, not just
one, and at each step extending all of them in all possible ways and keeping the
n best results.

Discovering rules in this way was the brainchild of Ryszard Michalski, a
Polish computer scientist. Michalski’s hometown of Kalusz was successively
part of Poland, Russia, Germany, and Ukraine, which may have left him more
attuned than most to disjunctive concepts. After immigrating to the United States
in 1970, he went on to found the symbolist school of machine learning, along
with Tom Mitchell and Jaime Carbonell. He had an imperious personality. If you
gave a talk at a machine-learning conference, the odds were good that at the end
he’d raise his hand to point out that you had just rediscovered one of his old
ideas.

Sets of rules are popular with retailers who are deciding which goods to
stock. Typically, they use a more exhaustive approach than “divide and
conquer,” looking for all rules that strongly predict the purchase of each item.
Walmart was a pioneer in this area. One of their early findings was that if you
buy diapers you are also likely to buy beer. Huh? One interpretation of this is
that Mom sends Dad to the supermarket to buy diapers, and as emotional

compensation, Dad buys a case of beer to go with them. Knowing this, the
supermarket can now sell more beer by putting it next to the diapers, which
would never have occurred to it without rule mining. The “beer and diapers” rule
has acquired legendary status among data miners (although some claim the
legend is of the urban variety). Either way, it’s a long way from the digital
circuit design problems Michalski had in mind when he first started thinking
about rule induction in the 1960s. When you invent a new learning algorithm,
you can’t even begin to imagine all the things it will be used for.

My first direct experience of rule learning in action was when, having just
moved to the United States to start graduate school, I applied for a credit card.
The bank sent me a letter saying “We regret that your application has been
rejected due to INSUFFICIENT-TIME-AT-CURRENT-ADDRESS and NO-
PREVIOUS-CREDIT-HISTORY” (or some other all-cap words to that effect). I
knew right then that there was much research left to do in machine learning.

Between blindness and hallucination

Sets of rules are vastly more powerful than conjunctive concepts. They’re so
powerful, in fact, that you can represent any concept using them. It’s not hard to
see why. If you give me a complete list of all the instances of a concept, I can
just turn each instance into a rule that specifies all attributes of that instance, and
the set of all those rules is the definition of the concept. Going back to the dating
example, one rule would be: If it’s a warm weekend night, there’s nothing good
on TV, and you propose going to a club, she’ll say yes. The table only contains a
few examples, but if it contained all 2 x 2 x 2 x 2 = 16 possible ones, with each
labeled “Date” or “No date,” turning each positive example into a rule in this
way would do the trick.

The power of rule sets is a double-edged sword. On the upside, you know
you can always find a rule set that perfectly matches the data. But before you
start feeling lucky, realize that you’re at severe risk of finding a completely
meaningless one. Remember the “no free lunch” theorem: you can’t learn
without knowledge. And assuming that the concept can be defined by a set of
rules is tantamount to assuming nothing.

An example of a useless rule set is one that just covers the exact positive
examples you’ve seen and nothing else. This rule set looks like it’s 100 percent
accurate, but that’s an illusion: it will predict that every new example is

negative, and therefore get every positive one wrong. If there are more positive
than negative examples overall, this will be even worse than flipping coins.
Imagine a spam filter that decides an e-mail is spam only if it’s an exact copy of
a previously labeled spam message. It’s easy to learn and looks great on the
labeled data, but you might as well have no spam filter at all. Unfortunately, our
“divide and conquer” algorithm could easily learn a rule set like that.

In his story “Funes the Memorious,” Jorge Luis Borges tells of meeting a
youth with perfect memory. This might at first seem like a great fortune, but it is
in fact an awful curse. Funes can remember the exact shape of the clouds in the
sky at an arbitrary time in the past, but he has trouble understanding that a dog
seen from the side at 3:14 p.m. is the same dog seen from the front at 3:15 p.m.
His own face in the mirror surprises him every time he sees it. Funes can’t
generalize; to him, two things are the same only if they look the same down to
every last detail. An unrestricted rule learner is like Funes and is equally unable
to function. Learning is forgetting the details as much as it is remembering the
important parts. Computers are the ultimate idiot savants: they can remember
everything with no trouble at all, but that’s not what we want them to do.

The problem is not limited to memorizing instances wholesale. Whenever a
learner finds a pattern in the data that is not actually true in the real world, we
say that it has overfit the data. Overfitting is the central problem in machine
learning. More papers have been written about it than about any other topic.
Every powerful learner, whether symbolist, connectionist, or any other, has to
worry about hallucinating patterns. The only safe way to avoid it is to severely
restrict what the learner can learn, for example by requiring that it be a short
conjunctive concept. Unfortunately, that throws out the baby with the bathwater,
leaving the learner unable to see most of the true patterns that are visible in the
data. Thus a good learner is forever walking the narrow path between blindness
and hallucination.

Humans are not immune to overfitting, either. You could even say that it’s
the root cause of a lot of our evils. Consider the little white girl who, upon seeing
a Latina baby at the mall, blurted out “Look, Mom, a baby maid!” (True event.)
It’s not that she’s a natural-born bigot. Rather, she overgeneralized from the few
Latina maids she has seen in her short life. The world is full of Latinas with
other occupations, but she hasn’t met them yet. Our beliefs are based on our
experience, which gives us a very incomplete picture of the world, and it’s easy
to jump to false conclusions. Being smart and knowledgeable doesn’t immunize
you against overfitting, either. Aristotle overfit when he said that it takes a force

to keep an object moving. Galileo’s genius was to intuit that undisturbed objects
keep moving without having visited outer space to witness it firsthand.

Learning algorithms are particularly prone to overfitting, though, because
they have an almost unlimited capacity to find patterns in data. In the time it
takes a human to find one pattern, a computer can find millions. In machine
learning, the computer’s greatest strength—its ability to process vast amounts of
data and endlessly repeat the same steps without tiring—is also its Achilles’
heel. And it’s amazing what you can find if you search enough. The Bible Code,
a 1998 bestseller, claimed that the Bible contains predictions of future events
that you can find by skipping letters at regular intervals and assembling words
from the letters you land on. Unfortunately, there are so many ways to do this
that you’re guaranteed to find “predictions” in any sufficiently long text.
Skeptics replied by finding them in Moby Dick and Supreme Court rulings,
along with mentions of Roswell and UFOs in Genesis. John von Neumann, one
of the founding fathers of computer science, famously said that “with four
parameters I can fit an elephant, and with five I can make him wiggle his trunk.”
Today we routinely learn models with millions of parameters, enough to give
each elephant in the world his own distinctive wiggle. It’s even been said that
data mining means “torturing the data until it confesses.”

Overfitting is seriously exacerbated by noise. Noise in machine learning just
means errors in the data, or random events that you can’t predict. Suppose that
your friend really does like to go clubbing when there’s nothing interesting on
TV, but you misremembered occasion number 3 and wrote down that there was
something good on TV that night. If you now try to come up with a set of rules
that makes an exception for that night, you’ll probably wind up with a worse
answer than if you’d just ignored it. Or suppose that your friend had a hangover
from going out the previous night and said no when ordinarily she would have
said yes. Unless you know about the hangover, learning a set of rules that gets
this example right is actually counterproductive: you’re better off
“misclassifying” it as a no. It gets worse: noise can make it impossible to come
up with any consistent set of rules. Notice that occasions 2 and 3 are in fact
indistinguishable: they have exactly the same attributes. If your friend said yes
on occasion 2 and no on occasion 3, there’s no rule that will get them both right.

Overfitting happens when you have too many hypotheses and not enough
data to tell them apart. The bad news is that even for the simple conjunctive
learner, the number of hypotheses grows exponentially with the number of
attributes. Exponential growth is a scary thing. An E. coli bacterium can divide

into two roughly every fifteen minutes; given enough nutrients it can grow into a
mass of bacteria the size of Earth in about a day. When the number of things an
algorithm needs to do grows exponentially with the size of its input, computer
scientists call it a combinatorial explosion and run for cover. In machine
learning, the number of possible instances of a concept is an exponential
function of the number of attributes: if the attributes are Boolean, each new
attribute doubles the number of possible instances by taking each previous
instance and extending it with a yes or no for that attribute. In turn, the number
of possible concepts is an exponential function of the number of possible
instances: since a concept labels each instance as positive or negative, adding an
instance doubles the number of possible concepts. As a result, the number of
concepts is an exponential function of an exponential function of the number of
attributes! In other words, machine learning is a combinatorial explosion of
combinatorial explosions. Perhaps we should just give up and not waste our time
on such a hopeless problem?

Fortunately, something happens in learning that kills off one of the
exponentials, leaving only an “ordinary” singly exponential intractable problem.
Suppose you have a bag full of concept definitions, each written on a piece of
paper, and you take out a random one and see how well it matches the data. A
bad definition is no more likely to get, say, all thousand examples in your data
right than a coin is likely to come up heads a thousand times in a row. “A chair
has four legs and is red or has a seat but no legs” will probably match some but
not all chairs you’ve seen and also match some but not all other things. So if a
random definition correctly matches a thousand examples, then it’s extremely
unlikely to be the wrong definition, or at least it’s pretty close to the real one.
And if the definition agrees with a million examples, then it’s practically certain
to be the right one. How else would it get all those examples right?

Of course, a real learning algorithm doesn’t just take one random definition
from the bag; it tries a whole bunch of them, and they’re not chosen at random.
The more definitions it tries, the more likely one of them will match all the
examples just by chance. If you do a million runs of a thousand coin flips, it’s
practically certain that at least one run will come up all heads, and a million is a
fairly small number of hypotheses to consider. For example, that’s roughly the
number of possible conjunctive concepts if examples have only thirteen
attributes. (Notice you don’t need to explicitly try the concepts one by one; if the
best one you found using the conjunctive learner matches all the examples, the
effect is the same.)

Bottom line: learning is a race between the amount of data you have and the
number of hypotheses you consider. More data exponentially reduces the
number of hypotheses that survive, but if you start with a lot of them, you may
still have some bad ones left at the end. As a rule of thumb, if the learner only
considers an exponential number of hypotheses (for example, all possible
conjunctive concepts), then the data’s exponential payoff cancels it and you’re
OK, provided you have plenty of examples and not too many attributes. On the
other hand, if it considers a doubly exponential number (for example, all
possible rule sets), then the data cancels only one of the exponentials and you’re
still in trouble. You can even figure out in advance how many examples you’ll
need to be pretty sure that the learner’s chosen hypothesis is very close to the
true one, provided it fits all the data; in other words, for the hypothesis to be
probably approximately correct. Harvard’s Leslie Valiant received the Turing
Award, the Nobel Prize of computer science, for inventing this type of analysis,
which he describes in his book entitled, appropriately enough, Probably
Approximately Correct.

Accuracy you can believe in

In practice, Valiant-style analysis tends to be very pessimistic and to call for
more data than you have. So how do you decide whether to believe what a
learner tells you? Simple: you don’t believe anything until you’ve verified it on
data that the learner didn’t see. If the patterns the learner hypothesized also hold
true on new data, you can be pretty confident that they’re real. Otherwise you
know the learner overfit. This is just the scientific method applied to machine
learning: it’s not enough for a new theory to explain past evidence because it’s
easy to concoct a theory that does that; the theory must also make new
predictions, and you only accept it after they’ve been experimentally verified.
(And even then only provisionally, because future evidence could still falsify it.)

Einstein’s general relativity was only widely accepted once Arthur
Eddington empirically confirmed its prediction that the sun bends the light of
distant stars. But you don’t need to wait around for new data to arrive to decide
whether you can trust your learner. Rather, you take the data you have and
randomly divide it into a training set, which you give to the learner, and a test
set, which you hide from it and use to verify its accuracy. Accuracy on held-out
data is the gold standard in machine learning. You can write a paper about a

great new learning algorithm you’ve invented, but if your algorithm is not
significantly more accurate than previous ones on held-out data, the paper is not
publishable.

Accuracy on previously unseen data is a pretty stringent test; so much so, in
fact, that a lot of science fails it. That does not make it useless, because science
is not just about prediction; it’s also about explanation and understanding. But
ultimately, if your models don’t make accurate predictions on new data, you
can’t be sure you’ve truly understood or explained the underlying phenomena.
And for machine learning, testing on unseen data is indispensable because it’s
the only way to tell whether the learner has overfit or not.

Even test-set accuracy is not foolproof. According to legend, in an early
military application a simple learner detected tanks with 100 percent accuracy in
both the training set and the test set, each consisting of one hundred images.
Amazing—or suspicious? Turns out all the tank images were lighter than the
nontank ones, and that’s all the learner was picking up. These days we have
larger data sets, but the quality of data collection isn’t necessarily better, so
caveat emptor. Hard-nosed empirical evaluation played an important role in the
growth of machine learning from a fledgling field into a mature one. Up to the
late 1980s, researchers in each tribe mostly believed their own rhetoric, assumed
their paradigm was fundamentally better, and communicated little with the other
camps. Then symbolists like Ray Mooney and Jude Shavlik started to
systematically compare the different algorithms on the same data sets and—
surprise, surprise—no clear winner emerged. Today the rivalry continues, but
there is much more cross-pollination. Having a common experimental
framework and a large repository of data sets maintained by the machine-
learning group at the University of California, Irvine, did wonders for progress.
And as we’ll see, our best hope of creating a universal learner lies in
synthesizing ideas from different paradigms.

Of course, it’s not enough to be able to tell when you’re overfitting; we need
to avoid it in the first place. That means stopping short of perfectly fitting the
data even if we’re able to. One method is to use statistical significance tests to
make sure the patterns we’re seeing are really there. For example, a rule
covering three hundred positive examples versus one hundred negatives and a
rule covering three positives versus one negative are both 75 percent accurate on
the training data, but the first rule is almost certainly better than coin flipping,
while the second isn’t, since four flips of an unbiased coin could easily result in
three heads. When constructing a rule, if at some point we can’t find any

conditions that significantly improve its accuracy then we just stop, even if it
still covers some negative examples. This reduces the rule’s training-set
accuracy, but probably makes it a more accurate generalization, which is what
we really care about.

We’re not home free yet, though. If I try one rule and it’s 75 percent accurate
on four hundred examples, I can probably believe it. But if I try a million rules
and the best one is 75 percent accurate on four hundred examples, I probably
can’t, because that could easily happen by chance. This is the same problem you
have when picking a mutual fund. The Clairvoyant Fund just beat the market ten
years in a row. Wow, the manager must be a genius. Or not? If you have a
thousand funds to choose from, the odds are better than even that one will beat
the market ten years in a row, even if they’re all secretly run by dart-throwing
monkeys. The scientific literature is also plagued by this problem. Significance
tests are the gold standard for deciding whether a research result is publishable,
but if several teams look for an effect and only one finds it, chances are it didn’t,
even though you’d never guess that from reading their solid-looking paper. One
solution would be to also publish negative results, so you’d know about all those
failed attempts, but that hasn’t caught on. In machine learning, we can keep track
of how many rules we’ve tried and adjust our significance tests accordingly, but
then they tend to throw out a lot of good rules along with the bad ones. A better
method is to realize that some false hypotheses will inevitably get through, but
keep their number under control by rejecting enough low-significance ones, and
then test the surviving hypotheses on further data.

Another popular method is to prefer simpler hypotheses. The “divide and
conquer” algorithm implicitly prefers simpler rules because it stops adding
conditions to a rule as soon as it covers only positive examples and stops adding
rules as soon as all positive examples are covered. But to combat overfitting, we
need a stronger preference for simpler rules, one that will cause us to stop adding
conditions even before all negative examples have been covered. For example,
we can subtract a penalty proportional to the length of the rule from its accuracy
and use that as an evaluation measure.

The preference for simpler hypotheses is popularly known as Occam’s razor,
but in a machine-learning context this is somewhat misleading. “Entities should
not be multiplied beyond necessity,” as the razor is often paraphrased, just
means choosing the simplest theory that fits the data. Occam would probably
have been perplexed by the notion that we should prefer a theory that does not
perfectly account for the evidence on the grounds that it will generalize better.

Simple theories are preferable because they incur a lower cognitive cost (for us)
and a lower computational cost (for our algorithms), not because we necessarily
expect them to be more accurate. On the contrary, even our most elaborate
models are usually oversimplifications of reality. Even among theories that
perfectly fit the data, we know from the “no free lunch” theorem that there’s no
guarantee that the simplest one will generalize best, and in fact some of the best
learning algorithms—Ilike boosting and support vector machines—Ilearn what
appear to be gratuitously complex models. (We’ll see why they work in Chapters
7 and 9.)

If your learner’s test-set accuracy disappoints, you need to diagnose the
problem. Was it blindness or hallucination? In machine learning, the technical
terms for these are bias and variance. A clock that’s always an hour late has high
bias but low variance. If instead the clock alternates erratically between fast and
slow but on average tells the right time, it has high variance but low bias.
Suppose you’re down at the pub with some friends, drinking and playing darts.
Unbeknownst to them, you’ve been practicing for years, and you’re a master of
the game. All your darts go straight to the bull’s-eye. You have low bias and low
variance, which is shown in the bottom left corner of this diagram:

Variance

Your friend Ben is also pretty good, but he’s had a bit too much to drink. His
darts are all over, but he loudly points out that on average he’s hitting the bull’s-
eye. (Maybe he should have been a statistician.) This is the low-bias, high-
variance case, shown in the bottom right corner. Ben’s girlfriend, Ashley, is very
steady, but she has a tendency to aim too high and to the right. She has low
variance and high bias (top left corner). Cody, who’s visiting from out of town
and has never played darts before, is both all over and off center. He has both
high bias and high variance (top right).

You can estimate the bias and variance of a learner by comparing its
predictions after learning on random variations of the training set. If it keeps
making the same mistakes, the problem is bias, and you need a more flexible
learner (or just a different one). If there’s no pattern to the mistakes, the problem
is variance, and you want to either try a less flexible learner or get more data.
Most learners have a knob you can turn to make them more or less flexible, such
as the threshold for significance tests or the penalty on the size of the model.
Tweaking that knob is your first resort.

Induction is the inverse of deduction

The deeper problem, however, is that most learners start out knowing too little,
and no amount of knob-twiddling will get them to the finish line. Without the
guidance of an adult brain’s worth of knowledge, they can easily go astray. Even
though it’s what most learners do, just assuming you know the form of the truth
(for example, that it’s a small set of rules) is not much to hang your hat on. A
strict empiricist would say that that’s all a newborn has, encoded in her brain’s
architecture, and indeed children overfit more than adults do, but we would like
to learn faster than a child does. (Eighteen years is a long time, and that’s not
counting college.) The Master Algorithm should be able to start with a large
body of knowledge, whether it was provided by humans or learned in previous
runs, and use it to guide new generalizations from data. That’s what scientists
do, and it’s as far as it gets from a blank slate. The “divide and conquer” rule
induction algorithm can’t do it, but there’s another way to learn rules that can.
The key is to realize that induction is just the inverse of deduction, in the
same way that subtraction is the inverse of addition, or integration the inverse of
differentiation. This idea was first proposed by William Stanley Jevons in the
late 1800s. Steve Muggleton and Wray Buntine, an English Australian team,

designed the first practical algorithm based on it in 1988. The strategy of taking
a well-known operation and figuring out its inverse has a storied history in
mathematics. Applying it to addition led to the invention of the integers, because
without negative numbers, addition doesn’t always have an inverse (3 — 4 = -1).
Similarly, applying it to multiplication led to the rationals, and applying it to
squaring led to complex numbers. Let’s see if we can apply it to deduction. A
classic example of deductive reasoning is:

Socrates is human.
All humans are mortal.
Therefore. 2.

The first statement is a fact about Socrates, and the second is a general rule
about humans. What follows? That Socrates is mortal, of course, by applying the
rule to Socrates. In inductive reasoning we start instead with the initial and
derived facts, and look for a rule that would allow us to infer the latter from the
former:

Socrates is human.

Therefore Socrates is mortal.

One such rule is: If Socrates is human, then he’s mortal. This does the job,
but is not very useful because it’s specific to Socrates. But now we apply
Newton’s principle and generalize the rule to all entities: If an entity is human,
then it’s mortal. Or, more succinctly: All humans are mortal. Of course, it would
be rash to induce this rule from Socrates alone, but we know similar facts about
other humans:

Plato is human. Plato is mortal.
Aristotle is human. Aristotle is mortal.
And so on.

For each pair of facts, we construct the rule that allows us to infer the second
fact from the first one and generalize it by Newton’s principle. When the same
general rule is induced over and over again, we can have some confidence that
it’s true.

So far we haven’t done anything that the “divide and conquer” algorithm
couldn’t do. Suppose, however, that instead of knowing that Socrates, Plato, and
Aristotle are human, we just know that they’re philosophers. We still want to
conclude that they’re mortal, and we have previously induced or been told that
all humans are mortal. What’s missing now? A different rule: All philosophers
are human. This also a valid generalization (at least until we solve Al and robots
start philosophizing), and it “fills the hole” in our reasoning:

Socrates is a philosopher.
All philosophers are human.
All humans are mortal.
Therefore Socrates is mortal.

We can also induce rules purely from other rules. If we know that all
philosophers are human and mortal, we can induce that all humans are mortal.
(We don’t induce that all mortals are human because we know other mortal
creatures, like cats and dogs. On the other hand, scientists, artists, and so on are
also human and mortal, reinforcing the rule.) In general, the more rules and facts
we start out with, the more opportunities we have to induce new rules using
“inverse deduction.” And the more rules we induce, the more rules we can
induce. It’s a virtuous circle of knowledge creation, limited only by overfitting
risk and computational cost. But here, too, having initial knowledge helps: if
instead of one large hole we have many small ones to fill, our induction steps
will be less risky and therefore less likely to overfit. (For example, given the
same number of examples, inducing that all philosophers are human is less risky
than inducing that all humans are mortal.)

Inverting an operation is often difficult because the inverse is not unique. For
example, a positive number has two square roots, one positive and one negative

(22 = (—2)2 = 4). Most famously, integrating the derivative of a function only
recovers the function up to a constant. The derivative of a function tells us how
much that function goes up or down at each point. Adding up all those changes
gives us the function back, except we don’t know where it started; we can
“slide” the integrated function up or down without changing the derivative. To
make life easy, we can “clamp down” the function by assuming the additive
constant is zero. Inverse deduction has a similar problem, and Newton’s
principle is one solution. For example, from All Greek philosophers are human
and All Greek philosophers are mortal we can induce that All humans are

mortal, or just that All Greeks are mortal. But why settle for the more modest
generalization? Instead, we can assume that all humans are mortal until we meet
an exception. (Which, according to Ray Kurzweil, will be soon.)

In the meantime, one important application of inverse deduction is predicting
whether new drugs will have harmful side effects. Failure during animal testing
and clinical trials is the main reason new drugs take many years and billions of
dollars to develop. By generalizing from known toxic molecular structures, we
can form rules that quickly weed out many apparently promising compounds,
greatly increasing the chances of successful trials on the remaining ones.

Learning to cure cancer

More generally, inverse deduction is a great way to discover new knowledge in
biology, and doing that is the first step in curing cancer. According to the Central
Dogma, everything that happens in a living cell is ultimately controlled by its
genes, via the proteins whose synthesis they initiate. In effect, a cell is like a tiny
computer, and DNA is the program running on it: change the DNA, and a skin
cell can become a neuron or a mouse cell can turn into a human one. In a
computer program, all bugs are the programmer’s fault. But in a cell, bugs can
arise spontaneously, when radiation or a copying error changes a gene into a
different one, a gene is accidentally copied twice, and so on. Most of the time
these mutations cause the cell to die silently, but sometimes the cell starts to
grow and divide uncontrollably and a cancer is born.

Curing cancer means stopping the bad cells from reproducing without
harming the good ones. That requires knowing how they differ, and in particular
how their genomes differ, since all else follows from that. Luckily, gene
sequencing is becoming routine and affordable. Using it, we can learn to predict
which drugs will work against which cancer genes. This contrasts with
traditional chemotherapy, which affects all cells indiscriminately. Learning
which drugs work against which mutations requires a database of patients, their
cancers’ genomes, the drugs tried, and the outcomes. The simplest rules encode
one-to-one correspondences between genes and drugs, such as If the BCR-ABL
gene is present, then use Gleevec. (BCR-ABL causes a type of leukemia, and
Gleevec cures it in nine out of ten patients.) Once sequencing cancer genomes
and collating treatment outcomes becomes standard practice, many more rules
like this will be discovered.

That’s only the beginning, however. Most cancers involve a combination of
mutations, or can only be cured by drugs that haven’t been discovered yet. The
next step is to learn rules with more complex conditions, involving the cancer’s
genome, the patient’s genome and medical history, known side effects of drugs,
and so on. But ultimately what we need is a model of how the entire cell works,
enabling us to simulate on the computer the effect of a specific patient’s
mutations, as well as the effect of different combinations of drugs, existing or
speculative. Our main sources of information for building such models are DNA
sequencers, gene expression microarrays, and the biological literature.
Combining these is where inverse deduction can shine.

Adam, the robot scientist we met in Chapter 1, gives a preview. Adam’s goal
is to figure out how yeast cells work. It starts with basic knowledge of yeast
genetics and metabolism and a trove of gene expression data from yeast cells. It
then uses inverse deduction to hypothesize which genes are expressed as which
proteins, designs microarray experiments to test them, revises its hypotheses,
and repeats. Whether each gene is expressed depends on other genes and
conditions in the environment, and the resulting web of interactions can be
represented as a set of rules, such as:

If the temperature is high, gene A is expressed.
If gene A is expressed and gene B is not, gene C is expressed.
If gene C is expressed, gene D is not.

If we knew the first and third rules but not the second, and we had
microarray data where at a high temperature B and D were not expressed, we
could induce the second rule by inverse deduction. Once we have that rule, and
perhaps have verified it using a microarray experiment, we can use it as the basis
for further inductive inferences. In a similar manner, we can piece together the
sequences of chemical reactions by which proteins do their work.

Just knowing which genes regulate which genes and how proteins organize
the cell’s web of chemical reactions is not enough, though. We also need to
know how much of each molecular species is produced. DNA microarrays and
other experiments can provide this type of quantitative information, but inverse
deduction, with its “all or none” logical character, is not very good at dealing
with it. For that we need the connectionist methods that we’ll meet in the next
chapter.

A game of twenty questions

Another limitation of inverse deduction is that it’s very computationally
intensive, which makes it hard to scale to massive data sets. For these, the
symbolist algorithm of choice is decision tree induction. Decision trees can be
viewed as an answer to the question of what to do if rules of more than one
concept match an instance. How do we then decide which concept the instance
belongs to? If we see a partly occluded object with a flat surface and four legs,
how do we decide whether it is a table or a chair? One option is to order the
rules, for example by decreasing accuracy, and choose the first one that matches.
Another is to let the rules vote. Decision trees instead ensure a priori that each
instance will be matched by exactly one rule. This will be the case if each pair of
rules differs in at least one attribute test, and such a rule set can be organized
into a decision tree. For example, consider these rules:

If you’re for cutting taxes and pro-life, you’re a Republican.

If you’re against cutting taxes, you’re a Democrat.

If you’re for cutting taxes, pro-choice, and against gun control, you’re an
independent.

If you’re for cutting taxes, pro-choice, and pro-gun control, you’re a
Democrat.

These can be organized into the following decision tree:

Cut Taxes

Yes No

Pro—Life @

Republican Gun Control

Yes

Democrat

Independent

A decision tree is like playing a game of twenty questions with an instance.
Starting at the root, each node asks about the value of one attribute, and
depending on the answer, we follow one or another branch. When we arrive at a
leaf, we read off the predicted concept. Each path from the root to a leaf
corresponds to a rule. If this reminds you of those annoying phone menus you
have to get through when you call customer service, it’s not an accident: a phone
menu is a decision tree. The computer on the other end of the line is playing a
game of twenty questions with you to figure out what you want, and each menu
is a question.

According to the decision tree above, you’re either a Republican, a
Democrat, or an independent; you can’t be more than one, or none of the above.
Sets of concepts with this property are called sets of classes, and the algorithm
that predicts them is a classifier. A single concept implicitly defines two classes:
the concept itself and its negation. (For example, spam and nonspam.) Classifiers
are the most widespread form of machine learning.

We can learn decision trees using a variant of the “divide and conquer”
algorithm. First we pick an attribute to test at the root. Then we focus on the
examples that went down each branch and pick the next test for those. (For
example, we check whether tax-cutters are pro-life or pro-choice.) We repeat this
for each new node we induce until all the examples in a branch have the same
class, at which point we label that branch with the class.

One salient question is how to pick the best attribute to test at a node.
Accuracy—the number of correctly predicted examples—doesn’t work very
well, because we’re not trying to predict a particular class; rather, we’re trying to
gradually separate the classes until each branch is “pure.” This brings to mind
the concept of entropy from information theory. The entropy of a set of objects
is a measure of the amount of disorder in it. If a group of 150 people includes 50
Republicans, 50 Democrats, and 50 independents, its political entropy is
maximum. On the other hand, if they’re all Republican then the entropy is zero
(as far as party affiliation goes). So to learn a good decision tree, we pick at each
node the attribute that on average yields the lowest class entropy across all its
branches, weighted by how many examples go into each branch.

As with rule learning, we don’t want to induce a tree that perfectly predicts
the classes of all the training examples, because it would probably overfit. As
before, we can use significance tests or a penalty on the size of the tree to
prevent this.

Having a branch for each value of an attribute is fine if the attribute is
discrete, but what about numeric attributes? If we had a branch for every value
of a continuous variable, the tree would be infinitely wide. A simple solution is
to pick a few key thresholds by entropy and use those. For example, is the
patient’s temperature above or below 100 degrees Fahrenheit? That, combined
with other symptoms, may be all the doctor needs to know about the patient’s
temperature to decide if he has an infection.

Decision trees are used in many different fields. In machine learning, they
grew out of work in psychology. Earl Hunt and colleagues used them in the
1960s to model how humans acquire new concepts, and one of Hunt’s graduate

students, J. Ross Quinlan, later tried using them for chess. His original goal was
to predict the outcome of king-rook versus king-knight endgames from the board
positions. From those humble beginnings, decision trees have grown to be,
according to surveys, the most widely used machine-learning algorithm. It’s not
hard to see why: they’re easy to understand, fast to learn, and usually quite
accurate without too much tweaking. Quinlan is the most prominent researcher
in the symbolist school. An unflappable, down-to-earth Australian, he made
decision trees the gold standard in classification by dint of relentlessly
improving them year after year, and writing beautifully clear papers about them.

Whatever you want to predict, there’s a good chance someone has used a
decision tree for it. Microsoft’s Kinect uses decision trees to figure out where
various parts of your body are from the output of its depth camera; it can then
use their motions to control the Xbox game console. In a 2002 head-to-head
competition, decision trees correctly predicted three out of every four Supreme
Court rulings, while a panel of experts got less than 60 percent correct.
Thousands of decision tree users can’t be wrong, you think, and sketch one to
predict your friend’s reply when you ask her out:

Day

Weekday Weekend

OEENE:

Good Bad

According to this tree, tonight she’ll say yes. With a deep breath, you pick up the
phone and dial her number.

The symbolists

The symbolists’ core belief is that all intelligence can be reduced to
manipulating symbols. A mathematician solves equations by moving symbols
around and replacing symbols by other symbols according to predefined rules.
The same is true of a logician carrying out deductions. According to this
hypothesis, intelligence is independent of the substrate; it doesn’t matter if the
symbol manipulations are done by writing on a blackboard, switching transistors
on and off, firing neurons, or playing with Tinkertoys. If you have a setup with
the power of a universal Turing machine, you can do anything. Software can be
cleanly separated from hardware, and if your concern is figuring out how
machines can learn, you (thankfully) don’t need to worry about the latter beyond
buying a PC or cycles on Amazon’s cloud.

Symbolist machine learners share this belief in the power of symbol
manipulation with many other computer scientists, psychologists, and
philosophers. The psychologist David Marr argued that every information
processing system should be studied at three distinct levels: the fundamental
properties of the problem it’s solving; the algorithms and representations used to
solve it; and how they are physically implemented. For example, addition can be
defined by a set of axioms irrespective of how it’s carried out; numbers can be
expressed in different ways (e.g., Roman and Arabic) and added using different
algorithms; and these can be implemented using an abacus, a pocket calculator,
or even, very inefficiently, in your head. Learning is a prime example of a
cognitive faculty we can profitably study according to Marr’s levels.

Symbolist machine learning is an offshoot of the knowledge engineering
school of Al In the 1970s, so-called knowledge-based systems scored some
impressive successes, and in the 1980s they spread rapidly, but then they died
out. The main reason they did was the infamous knowledge acquisition
bottleneck: extracting knowledge from experts and encoding it as rules is just too

difficult, labor-intensive, and failure-prone to be viable for most problems.
Letting the computer automatically learn to, say, diagnose diseases by looking at
databases of past patients’ symptoms and the corresponding outcomes turned out
to be much easier than endlessly interviewing doctors. Suddenly, the work of
pioneers like Ryszard Michalski, Tom Mitchell, and Ross Quinlan had a new
relevance, and the field hasn’t stopped growing since. (Another important
problem was that knowledge-based systems had trouble dealing with
uncertainty, of which more in Chapter 6.)

Because of its origins and guiding principles, symbolist machine learning is
still closer to the rest of Al than the other schools. If computer science were a
continent, symbolist learning would share a long border with knowledge
engineering. Knowledge is traded in both directions—manually entered
knowledge for use in learners, induced knowledge for addition to knowledge
bases—but at the end of the day the rationalist-empiricist fault line runs right
down that border, and crossing it is not easy.

Symbolism is the shortest path to the Master Algorithm. It doesn’t require us
to figure out how evolution or the brain works, and it avoids the mathematical
complexities of Bayesianism. Sets of rules and decision trees are easy to
understand, so we know what the learner is up to. This makes it easier to figure
out what it’s doing right and wrong, fix the latter, and have confidence in the
results.

Despite the popularity of decision trees, inverse deduction is the better
starting point for the Master Algorithm. It has the crucial property that
incorporating knowledge into it is easy—and we know Hume’s problem makes
that essential. Also, sets of rules are an exponentially more compact way to
represent most concepts than decision trees. Converting a decision tree to a set of
rules is easy: each path from the root to a leaf becomes a rule, and there’s no
blowup. On the other hand, in the worst case converting a set of rules into a
decision tree requires converting each rule into a mini-decision tree, and then
replacing each leaf of rule 1’s tree with a copy of rule 2’s tree, each leaf of each
copy of rule 2 with a copy of rule 3, and so on, causing a massive blowup.

Inverse deduction is like having a superscientist systematically looking at the
evidence, considering possible inductions, collating the strongest, and using
those along with other evidence to construct yet further hypotheses—all at the
speed of computers. It’s clean and beautiful, at least for the symbolist taste. On
the other hand, it has some serious shortcomings. The number of possible
inductions is vast, and unless we stay close to our initial knowledge, it’s easy to

get lost in space. Inverse deduction is easily confused by noise: how do we
figure out what the missing deductive steps are, if the premises or conclusions
are themselves wrong? Most seriously, real concepts can seldom be concisely
defined by a set of rules. They’re not black and white: there’s a large gray area
between, say, spam and nonspam. They require weighing and accumulating
weak evidence until a clear picture emerges. Diagnosing an illness involves
giving more weight to some symptoms than others, and being OK with
incomplete evidence. No one has ever succeeded in learning a set of rules that
will recognize a cat by looking at the pixels in an image, and probably no one
ever will.

Connectionists, in particular, are highly critical of symbolist learning.
According to them, concepts you can define with logical rules are only the tip of
the iceberg; there’s a lot going on under the surface that formal reasoning just
can’t see, in the same way that most of what goes on in our minds is
subconscious. You can’t just build a disembodied automated scientist and hope
he’ll do something meaningful—you have to first endow him with something
like a real brain, connected to real senses, growing up in the world, perhaps even
stubbing his toe every now and then. And how do you build such a brain? By
reverse engineering the competition. If you want to reverse engineer a car, you
look under the hood. If you want to reverse engineer the brain, you look inside
the skull.

CHAPTER FOUR

fe

How Does Your Brain Learn?

Hebb’s rule, as it has come to be known, is the cornerstone of connectionism.
Indeed, the field derives its name from the belief that knowledge is stored in the
connections between neurons. Donald Hebb, a Canadian psychologist, stated it
this way in his 1949 book The Organization of Behavior: “When an axon of cell
A is near enough cell B and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased.” It’s often paraphrased as
“Neurons that fire together wire together.”

Hebb’s rule was a confluence of ideas from psychology and neuroscience,
with a healthy dose of speculation thrown in. Learning by association was a
favorite theme of the British empiricists, from Locke and Hume to John Stuart
Mill. In his Principles of Psychology, William James enunciates a general
principle of association that’s remarkably similar to Hebb’s rule, with neurons
replaced by brain processes and firing efficiency by propagation of excitement.
Around the same time, the great Spanish neuroscientist Santiago Ramoén y Cajal
was making the first detailed observations of the brain, staining individual
neurons using the recently invented Golgi method and cataloguing what he saw
like a botanist classifying new species of trees. By Hebb’s time, neuroscientists
had a rough understanding of how neurons work, but he was the first to propose
a mechanism by which they could encode associations.

In symbolist learning, there is a one-to-one correspondence between symbols
and the concepts they represent. In contrast, connectionist representations are

distributed: each concept is represented by many neurons, and each neuron
participates in representing many different concepts. Neurons that excite one
another form what Hebb called a cell assembly. Concepts and memories are
represented in the brain by cell assemblies. Each of these can include neurons
from different brain regions and overlap with other assemblies. The cell
assembly for “leg” includes the one for “foot,” which includes assemblies for the
image of a foot and the sound of the word foot. If you ask a symbolist system
where the concept “New York” is represented, it can point to the precise location
in memory where it’s stored. In a connectionist system, the answer is “it’s stored
a little bit everywhere.”

Another difference between symbolist and connectionist learning is that the
former is sequential, while the latter is parallel. In inverse deduction, we figure
out one step at a time what new rules are needed to arrive at the desired
conclusion from the premises. In connectionist models, all neurons learn
simultaneously according to Hebb’s rule. This mirrors the different properties of
computers and brains. Computers do everything one small step at a time, like
adding two numbers or flipping a switch, and as a result they need a lot of steps
to accomplish anything useful; but those steps can be very fast, because
transistors can switch on and off billions of times per second. In contrast, brains
can perform a large number of computations in parallel, with billions of neurons
working at the same time; but each of those computations is slow, because
neurons can fire at best a thousand times per second.

The number of transistors in a computer is catching up with the number of
neurons in a human brain, but the brain wins hands down in the number of
connections. In a microprocessor, a typical transistor is directly connected to
only a few others, and the planar semiconductor technology used severely limits
how much better a computer can do. In contrast, a neuron has thousands of
synapses. If you’re walking down the street and come across an acquaintance, it
takes you only about a tenth of a second to recognize her. At neuron switching
speeds, this is barely enough time for a hundred processing steps, but in those
hundred steps your brain manages to scan your entire memory, find the best
match, and adapt it to the new context (different clothes, different lighting, and
so on). In a brain, each processing step can be very complex and involve a lot of
information, consonant with a distributed representation.

This does not mean that we can’t simulate a brain with a computer; after all,
that’s what connectionist algorithms do. Because a computer is a universal
Turing machine, it can implement the brain’s computations as well as any others,

provided we give it enough time and memory. In particular, the computer can
use speed to make up for lack of connectivity, using the same wire a thousand
times over to simulate a thousand wires. In fact, these days the main limitation of
computers compared to brains is energy consumption: your brain uses only
about as much power as a small lightbulb, while Watson’s supply could light up
a whole office building.

To simulate a brain, we need more than Hebb’s rule, however; we need to
understand how the brain is built. Each neuron is like a tiny tree, with a
prodigious number of roots—the dendrites—and a slender, sinuous trunk—the
axon. The brain is a forest of billions of these trees, but there’s something
unusual about them. Each tree’s branches make connections—synapses—to the
roots of thousands of others, forming a massive tangle like nothing you’ve ever
seen. Some neurons have short axons and some have exceedingly long ones,
reaching clear from one side of the brain to the other. Placed end to end, the
axons in your brain would stretch from Earth to the moon.

And this jungle crackles with electricity. Sparks run along tree trunks and set
off more sparks in neighboring trees. Every now and then, a whole area of the
jungle whips itself into a frenzy before settling down again. When you wiggle
your toe, a series of electric discharges, called action potentials, runs all the way
down your spinal chord and leg until it reaches your toe muscles and tells them
to move. Your brain at work is a symphony of these electric sparks. If you could
sit inside it and watch what happens as you read this page, the scene you’d see
would make even the busiest science-fiction metropolis look laid back by
comparison. The end result of this phenomenally complex pattern of neuron
firings is your consciousness.

In Hebb’s time there was no way to measure synaptic strength or change in
it, let alone figure out the molecular biology of synaptic change. Today, we
know that synapses do grow (or form anew) when the postsynaptic neuron fires
soon after the presynaptic one. Like all cells, neurons have different
concentrations of ions inside and outside, creating a voltage across their
membrane. When the presynaptic neuron fires, tiny sacs release neurotransmitter
molecules into the synaptic cleft. These cause channels in the postsynaptic
neuron’s membrane to open, letting in potassium and sodium ions and changing
the voltage across the membrane as a result. If enough presynaptic neurons fire
close together, the voltage suddenly spikes, and an action potential travels down
the postsynaptic neuron’s axon. This also causes the ion channels to become
more responsive and new channels to appear, strengthening the synapse. To the

best of our knowledge, this is how neurons learn.
The next step is to turn it into an algorithm.

The rise and fall of the perceptron

The first formal model of a neuron was proposed by Warren McCulloch and
Walter Pitts in 1943. It looked a lot like the logic gates computers are made of.
An OR gate switches on when at least one of its inputs is on, and an AND gate
when all of them are on. A McCulloch-Pitts neuron switches on when the
number of its active inputs passes some threshold. If the threshold is one, the
neuron acts as an OR gate; if the threshold is equal to the number of inputs, as an
AND gate. In addition, a McCulloch-Pitts neuron can prevent another from
switching on, which models both inhibitory synapses and NOT gates. So a
network of neurons can do all the operations a computer does. In the early days,
computers were often called electronic brains, and this was not just an analogy.

What the McCulloch-Pitts neuron doesn’t do is learn. For that we need to
give variable weights to the connections between neurons, resulting in what’s
called a perceptron. Perceptrons were invented in the late 1950s by Frank
Rosenblatt, a Cornell psychologist. A charismatic speaker and lively character,
Rosenblatt did more than anyone else to shape the early days of machine
learning. The name perceptron derives from his interest in applying his models
to perceptual tasks like speech and character recognition. Rather than implement
perceptrons in software, which was very slow in those days, Rosenblatt built his
own devices. The weights were implemented by variable resistors like those
found in dimmable light switches, and weight learning was carried out by
electric motors that turned the knobs on the resistors. (Talk about high tech!)

In a perceptron, a positive weight represents an excitatory connection, and a
negative weight an inhibitory one. The perceptron outputs 1 if the weighted sum
of its inputs is above threshold, and 0 if it’s below. By varying the weights and
threshold, we can change the function that the perceptron computes. This ignores
a lot of the details of how neurons work, of course, but we want to keep things as
simple as possible; our goal is to develop a general-purpose learning algorithm,
not to build a realistic model of the brain. If some of the details we ignored turn
out to be important, we can always add them in later. Despite our simplifying
abstractions, however, we can still see how each part of this model corresponds
to a part of the neuron:

DENDRITES

Input 1 ~—_ weight 1
Input 2 —
Weight 2

The higher an input’s weight, the stronger the corresponding synapse. The cell
body adds up all the weighted inputs, and the axon applies a step function to the
result. The axon’s box in the diagram shows the graph of a step function: 0 for
low values of the input, abruptly changing to 1 when the input reaches the
threshold.

Suppose a perceptron has two continuous inputs x and y. (In other words, x
and y can take on any numeric values, not just 0 and 1.) Then each example can
be represented by a point on the plane, and the boundary between positive
examples (for which the perceptron outputs 1) and negative ones (output 0) is a
straight line:

CELL
BODY

AXON

Output

Input n Weight n

This is because the boundary is the set of points where the weighted sum exactly
equals the threshold, and a weighted sum is a linear function. For example, if the
weights are 2 for x and 3 for y and the threshold is 6, the boundary is defined by
the equation 2 x + 3 y = 6. The point x = 0, y = 2 is on the boundary, and to stay
on it we have to take three steps across for every two steps down, so that the gain
in x makes up for the loss in y. The resulting points form a straight line.

Learning a perceptron’s weights means varying the direction of the straight
line until all the positive examples are on one side and all the negative ones on
the other. In one dimension, the boundary is a point; in two, it’s a straight line; in
three, it’s a plane; and in more than three, it’s a hyperplane. It’s hard to visualize

things in hyperspace, but the math works just the same way. In n dimensions, we
have n inputs and the perceptron has n weights. To decide whether the
perceptron fires or not, we multiply each weight by the corresponding input and
compare the sum of all of them with the threshold.

If all inputs have a weight of one and the threshold is half the number of
inputs, then the perceptron fires if more than half its inputs fire. In other words,
the perceptron is a like a tiny parliament where the majority wins. (Or perhaps
not so tiny, considering it can have thousands of members.) It’s not altogether
democratic, though, because in general not everyone has an equal vote. A neural
network is more like a social network, where a few close friends count for more
than thousands of Facebook ones. And it’s the friends you trust most that
influence you the most. If a friend recommends a movie and you go see it and
like it, next time around you’ll probably follow her advice again. On the other
hand, if she keeps gushing about movies you didn’t enjoy, you will start to
ignore her opinions (and perhaps your friendship even wanes a bit).

This is how Rosenblatt’s perceptron algorithm learns weights.

Consider the grandmother cell, a favorite thought experiment of cognitive
neuroscientists. The grandmother cell is a neuron in your brain that fires
whenever you see your grandmother, and only then. Whether or not grandmother
cells really exist is an open question, but let’s design one for use in machine
learning. A perceptron learns to recognize your grandmother as follows. The
inputs to the cell are either the raw pixels in the image or various hardwired
features of it, like brown eyes, which takes the value 1 if the image contains a
pair of brown eyes and 0 otherwise. In the beginning, all the connections from
features to the neuron have small random weights, like the synapses in your
brain at birth. Then we show the perceptron a series of images, some of your
grandmother and some not. If it fires upon seeing an image of your grandmother,
or doesn’t fire upon seeing something else, then no learning needs to happen. (If
it ain’t broke, don’t fix it.) But if the perceptron fails to fire when it’s looking at
your grandmother, that means the weighted sum of its inputs should have been
higher, so we increase the weights of the inputs that are on. (For example, if your
grandmother has brown eyes, the weight of that feature goes up.) Conversely, if
the perceptron fires when it shouldn’t, we decrease the weights of the active
inputs. It’s the errors that drive the learning. Over time, the features that are
indicative of your grandmother acquire high weights, and the ones that aren’t get
low weights. Once the perceptron always fires upon seeing your grandmother,
and only then, the learning is complete.

The perceptron generated a lot of excitement. It was simple, yet it could
recognize printed letters and speech sounds just by being trained with examples.
A colleague of Rosenblatt’s at Cornell proved that, if the positive and negative
examples could be separated by a hyperplane, the perceptron would find it. For
Rosenblatt and others, a genuine understanding of how the brain learns seemed
within reach, and with it a powerful general-purpose learning algorithm.

But then the perceptron hit a brick wall. The knowledge engineers were
irritated by Rosenblatt’s claims and envious of all the attention and funding
neural networks, and perceptrons in particular, were getting. One of them was
Marvin Minsky, a former classmate of Rosenblatt’s at the Bronx High School of
Science and by then the leader of the AI group at MIT. (Ironically, his PhD had
been on neural networks, but he had grown disillusioned with them.) In 1969,
Minsky and his colleague Seymour Papert published Perceptrons, a book
detailing the shortcomings of the eponymous algorithm, with example after
example of simple things it couldn’t learn. The simplest one—and therefore the
most damning—was the exclusive-OR function, or XOR for short, which is true
if one of its inputs is true but not both. For example, Nike’s two most loyal
demographics are supposedly teenage boys and middle-aged women. In other
words, you’re likely to buy Nike shoes if you’re young XOR female. Young is
good, female is good, but both is not. You’re also an unpromising target for Nike
advertising if you’re neither young nor female. The problem with XOR is that
there is no straight line capable of separating the positive from the negative
examples. This figure shows two failed candidates:

odft - .+

Young | + -

Male Female

Since perceptrons can only learn linear boundaries, they can’t learn XOR. And if
they can’t do even that, they’re not a very good model of how the brain learns, or
a viable candidate for the Master Algorithm.

A perceptron models only a single neuron’s learning, however, and although

Minsky and Papert acknowledged that layers of interconnected neurons should
be capable of more, they didn’t see a way to learn them. Neither did anyone else.
The problem is that there’s no clear way to change the weights of the neurons in
the “hidden” layers to reduce the errors made by the ones in the output layer.
Every hidden neuron influences the output via multiple paths, and every error
has a thousand fathers. Who do you blame? Or, conversely, who gets the credit
for correct outputs? This credit-assignment problem shows up whenever we try
to learn a complex model and is one of the central problems in machine learning.

Perceptrons was mathematically unimpeachable, searing in its clarity, and
disastrous in its effects. Machine learning at the time was associated mainly with
neural networks, and most researchers (not to mention funders) concluded that
the only way to build an intelligent system was to explicitly program it. For the
next fifteen years, knowledge engineering would hold center stage, and machine
learning seemed to have been consigned to the ash heap of history.

Physicist makes brain out of glass

If the history of machine learning were a Hollywood movie, the villain would be
Marvin Minsky. He’s the evil queen who gives Snow White a poisoned apple,
leaving her in suspended animation. (In a 1988 essay, Seymour Papert even
compared himself, tongue-in-cheek, to the huntsman the queen sent to kill Snow
White in the forest.) And Prince Charming would be a Caltech physicist by the
name of John Hopfield. In 1982, Hopfield noticed a striking analogy between the
brain and spin glasses, an exotic material much beloved of statistical physicists.
This set off a connectionist renaissance that culminated a few years later in the
invention of the first algorithms capable of solving the credit-assignment
problem, ushering in a new era where machine learning replaced knowledge
engineering as the dominant paradigm in Al

Spin glasses are not actually glasses, although they have some glass-like
properties. Rather, they are magnetic materials. Every electron is a tiny magnet
by virtue of its spin, which can point “up” or “down.” In materials like iron,
electrons’ spins tend to line up: if an electron with down spin is surrounded by
electrons with up spins, it will probably flip to up. When most of the spins in a
chunk of iron line up, it turns into a magnet. In ordinary magnets, the strength of
interaction between adjacent spins is the same for all pairs, but in a spin glass it
can vary; it may even be negative, causing nearby spins to point in opposite

directions. The energy of an ordinary magnet is lowest when all its spins align,
but in a spin glass, it’s not so simple. Indeed, finding the lowest-energy state of a
spin glass is an NP-complete problem, meaning that just about every other
difficult optimization problem can be reduced to it. Because of this, a spin glass
doesn’t necessarily settle into its overall lowest energy state; much like rainwater
may flow downhill into a lake instead of reaching the ocean, a spin glass may get
stuck in a local minimum, a state with lower energy than all the states that can be
reached from it by flipping a spin, rather than evolve to the global one.

Hopfield noticed an interesting similarity between spin glasses and neural
networks: an electron’s spin responds to the behavior of its neighbors much like
a neuron does. In the electron’s case, it flips up if the weighted sum of the
neighbors exceeds a threshold and flips (or stays) down otherwise. Inspired by
this, he defined a type of neural network that evolves over time in the same way
that a spin glass does and postulated that the network’s minimum energy states
are its memories. Each such state has a “basin of attraction” of initial states that
converge to it, and in this way the network can do pattern recognition: for
example, if one of the memories is the pattern of black-and-white pixels formed
by the digit nine and the network sees a distorted nine, it will converge to the
“ideal” one and thereby recognize it. Suddenly, a vast body of physical theory
was applicable to machine learning, and a flood of statistical physicists poured
into the field, helping it break out of the local minimum it had been stuck in.

A spin glass is still a very unrealistic model of the brain, though. For one,
spin interactions are symmetric, and connections between neurons in the brain
are not. Another big issue that Hopfield’s model ignored is that real neurons are
statistical: they don’t deterministically turn on and off as a function of their
inputs; rather, as the weighted sum of inputs increases, the neuron becomes more
likely to fire, but it’s not certain that it will. In 1985, David Ackley, Geoff
Hinton, and Terry Sejnowski replaced the deterministic neurons in Hopfield
networks with probabilistic ones. A neural network now had a probability
distribution over its states, with higher-energy states being exponentially less
likely than lower-energy ones. In fact, the probability of finding the network in a
particular state was given by the well-known Boltzmann distribution from
thermodynamics, so they called their network a Boltzmann machine.

A Boltzmann machine has a mix of sensory and hidden neurons (analogous
to, for example, the retina and the brain, respectively). It learns by being
alternately awake and asleep, just like humans. While awake, the sensory
neurons fire as dictated by the data, and the hidden ones evolve according to the

network dynamics and the sensory input. For example, if the network is shown
an image of a nine, the neurons corresponding to the black pixels in the image
stay on, the others stay off, and the hidden ones fire randomly according to the
Boltzmann distribution given those pixel values. During sleep, the machine
dreams, leaving both sensory and hidden neurons free to wander. Just before the
new day dawns, it compares the statistics of its states during the dream and
during yesterday’s activities and changes the connection weights so that they
match. If two neurons tend to fire together during the day but less so while
asleep, the weight of their connection goes up; if it’s the opposite, they go down.
By doing this day after day, the predicted correlations between sensory neurons
evolve until they match the real ones. At this point, the Boltzmann machine has
learned a good model of the data and effectively solved the credit-assignment
problem.

Geoff Hinton went on to try many variations on Boltzmann machines over
the following decades. Hinton, a psychologist turned computer scientist and
great-great-grandson of George Boole, the inventor of the logical calculus used
in all digital computers, is the world’s leading connectionist. He has tried longer
and harder to understand how the brain works than anyone else. He tells of
coming home from work one day in a state of great excitement, exclaiming “I
did it! I’ve figured out how the brain works!” His daughter replied, “Oh, Dad,
not again!” Hinton’s latest passion is deep learning, which we’ll meet later in
this chapter. He was also involved in the development of backpropagation, an
even better algorithm than Boltzmann machines for solving the credit-
assignment problem that we’ll look at next. Boltzmann machines could solve the
credit-assignment problem in principle, but in practice learning was very slow
and painful, making this approach impractical for most applications. The next
breakthrough involved getting rid of another oversimplification that dated all the
way back to McCulloch and Pitts.

The most important curve in the world

As far as its neighbors are concerned, a neuron can only be in one of two states:
firing or not firing. This misses an important subtlety, however. Action
potentials are short lived; the voltage spikes for a small fraction of a second and
immediately goes back to its resting state. And a single spike barely registers in
the receiving neuron; it takes a train of spikes closely on each other’s heels to

wake it up. A typical neuron spikes occasionally in the absence of stimulation,
spikes more and more frequently as stimulation builds up, and saturates at the
fastest spiking rate it can muster, beyond which increased stimulation has no
effect. Rather than a logic gate, a neuron is more like a voltage-to-frequency
converter. The curve of frequency as a function of voltage looks like this:

Frequency

Voltage

This curve, which looks like an elongated S, is variously known as the logistic,
sigmoid, or S curve. Peruse it closely, because it’s the most important curve in
the world. At first the output increases slowly with the input, so slowly it seems
constant. Then it starts to change faster, then very fast, then slower and slower
until it becomes almost constant again. The transfer curve of a transistor, which
relates its input and output voltages, is also an S curve. So both computers and
the brain are filled with S curves. But it doesn’t end there. The S curve is the
shape of phase transitions of all kinds: the probability of an electron flipping its
spin as a function of the applied field, the magnetization of iron, the writing of a
bit of memory to a hard disk, an ion channel opening in a cell, ice melting, water
evaporating, the inflationary expansion of the early universe, punctuated
equilibria in evolution, paradigm shifts in science, the spread of new
technologies, white flight from multiethnic neighborhoods, rumors, epidemics,
revolutions, the fall of empires, and much more. The Tipping Point could equally
well (if less appealingly) be entitled The S Curve. An earthquake is a phase
transition in the relative position of two adjacent tectonic plates. A bump in the
night is just the sound of the microscopic tectonic plates in your house’s walls
shifting, so don’t be scared. Joseph Schumpeter said that the economy evolves
by cracks and leaps: S curves are the shape of creative destruction. The effect of
financial gains and losses on your happiness follows an S curve, so don’t sweat
the big stuff. The probability that a random logical formula is satisfiable—the
quintessential NP-complete problem—undergoes a phase transition from almost

1 to almost 0 as the formula’s length increases. Statistical physicists spend their
lives studying phase transitions.

In Hemingway’s The Sun Also Rises, when Mike Campbell is asked how he
went bankrupt, he replies, “Two ways. Gradually and then suddenly.” The same
could be said of Lehman Brothers. That’s the essence of an S curve. One of the
futurist Paul Saffo’s rules of forecasting is: look for the S curves. When you
can’t get the temperature in the shower just right—first it’s too cold, and then it
quickly shifts to too hot—blame the S curve. When you make popcorn, watch
the S curve’s progress: at first nothing happens, then a few kernels pop, then a
bunch more, then the bulk of them in a sudden burst of fireworks, then a few
more, and then it’s ready to eat. Every motion of your muscles follows an S
curve: slow, then fast, then slow again. Cartoons gained a new naturalness when
the animators at Disney figured this out and started copying it. Your eyes move
in S curves, fixating on one thing and then another, along with your
consciousness. Mood swings are phase transitions. So are birth, adolescence,
falling in love, getting married, getting pregnant, getting a job, losing it, moving
to a new town, getting promoted, retiring, and dying. The universe is a vast
symphony of phase transitions, from the cosmic to the microscopic, from the
mundane to the life changing.

The S curve is not just important as a model in its own right; it’s also the
jack-of-all-trades of mathematics. If you zoom in on its midsection, it
approximates a straight line. Many phenomena we think of as linear are in fact S
curves, because nothing can grow without limit. Because of relativity, and
contra Newton, acceleration does not increase linearly with force, but follows an
S curve centered at zero. So does electric current as a function of voltage in the
resistors found in electronic circuits, or in a light bulb (until the filament melts,
which is itself another phase transition). If you zoom out from an S curve, it
approximates a step function, with the output suddenly changing from zero to
one at the threshold. So depending on the input voltages, the same curve
represents the workings of a transistor in both digital computers and analog
devices like amplifiers and radio tuners. The early part of an S curve is
effectively an exponential, and near the saturation point it approximates
exponential decay. When someone talks about exponential growth, ask yourself:
How soon will it turn into an S curve? When will the population bomb peter out,
Moore’s law lose steam, or the singularity fail to happen? Differentiate an S
curve and you get a bell curve: slow, fast, slow becomes low, high, low. Add a
succession of staggered upward and downward S curves, and you get something

close to a sine wave. In fact, every function can be closely approximated by a
sum of S curves: when the function goes up, you add an S curve; when it goes
down, you subtract one. Children’s learning is not a steady improvement but an
accumulation of S curves. So is technological change. Squint at the New York
City skyline and you can see a sum of S curves unfolding across the horizon,
each as sharp as a skyscraper’s corner.

Most importantly for us, S curves lead to a new solution to the credit-
assignment problem. If the universe is a symphony of phase transitions, let’s
model it with one. That’s what the brain does: it tunes the system of phase
transitions inside to the one outside. So let’s replace the perceptron’s step
function with an S curve and see what happens.

Climbing mountains in hyperspace

In the perceptron algorithm, the error signal is all or none: you got it either right
or wrong. That’s not much to go on, particularly if you have a network of many
neurons. You may know that the output neuron is wrong (oops, that wasn’t your
grandmother), but what about some neuron deep inside the brain? What does it
even mean for such a neuron to be right or wrong? If the neurons’ output is
continuous instead of binary, the picture changes. For starters, we now know
how much the output neuron is wrong by: the difference between it and the
desired output. If the neuron should be firing away (“Oh hi, Grandma!”) and is
firing a little, that’s better than if it’s not firing at all. More importantly, we can
now propagate that error to the hidden neurons: if the output neuron should fire
more and neuron A connects to it, then the more A is firing, the more we should
strengthen their connection; but if A is inhibited by another neuron B, then B
should fire less, and so on. Based on the feedback from all the neurons it’s
connected to, each neuron decides how much more or less to fire. Based on that
and the activity of its input neurons, it strengthens or weakens its connections to
them. I need to fire more, and neuron B is inhibiting me? Lower its weight. And
neuron C is firing away, but its connection to me is weak? Strengthen it. My
“customer” neurons, downstream in the network, will tell me how well I’'m
doing in the next round.

Whenever the learner’s “retina” sees a new image, that signal propagates
forward through the network until it produces an output. Comparing this output
with the desired one yields an error signal, which then propagates back through

the layers until it reaches the retina. Based on this returning signal and on the
inputs it had received during the forward pass, each neuron adjusts its weights.
As the network sees more and more images of your grandmother and other
people, the weights gradually converge to values that let it discriminate between
the two. Backpropagation, as this algorithm is known, is phenomenally more
powerful than the perceptron algorithm. A single neuron could only learn
straight lines. Given enough hidden neurons, a multilayer perceptron, as it’s
called, can represent arbitrarily convoluted frontiers. This makes
backpropagation—or simply backprop—the connectionists’ master algorithm.

Backprop is an instance of a strategy that is very common in both nature and
technology: if you’re in a hurry to get to the top of the mountain, climb the
steepest slope you can find. The technical term for this is gradient ascent (if you
want to get to the top) or gradient descent (if you’re looking for the valley
bottom). Bacteria can find food by swimming up the concentration gradient of,
say, glucose molecules, and they can flee from poisons by swimming down their
gradient. All sorts of things, from aircraft wings to antenna arrays, can be
optimized by gradient descent. Backprop is an efficient way to do it in a
multilayer perceptron: keep tweaking the weights so as to lower the error, and
stop when all tweaks fail. With backprop, you don’t have to figure out how to
tweak each neuron’s weights from scratch, which would be too slow; you can do
it layer by layer, tweaking each neuron based on how you tweaked the neurons it
connects to. If you had to throw out your entire machine-learning toolkit in an
emergency save for one tool, gradient descent is probably the one you’d want to
hold on to.

So does backprop solve the machine-learning problem? Can we just throw
together a big pile of neurons, wait for it to do its magic, and on the way to the
bank collect a Nobel Prize for figuring out how the brain works? Alas, life is not
that easy. Suppose your network has only one weight, and this is the graph of the
error as a function of it:

50 1

Error

2571

0.0 2.0 4.0 6.0 8.0
Weight

The optimal weight, where the error is lowest, is 2.0. If the network starts out
with a weight of 0.75, for example, backprop will get to the optimum in a few
steps, like a ball rolling downhill. But if it starts at 5.5, on the other hand,
backprop will roll down to 7.0 and remain stuck there. Backprop, with its
incremental weight changes, doesn’t know how to find the global error
minimum, and local ones can be arbitrarily bad, like mistaking your
grandmother for a hat. With one weight, you could try every possible value at
increments of 0.01 and find the optimum that way. But with thousands of
weights, let alone millions or billions, this is not an option because the number
of points on the grid goes up exponentially with the number of weights. The
global minimum is hidden somewhere in the unfathomable vastness of
hyperspace—and good luck finding it.

Imagine you’ve been kidnapped and left blindfolded somewhere in the
Himalayas. Your head is throbbing, and your memory is not too good, either. All
you know is you need to get to the top of Mount Everest. What do you do? You
take a step forward and nearly slide into a ravine. After catching your breath,
you decide to be a bit more systematic. You carefully feel around with your foot
until you find the highest point you can and step gingerly to that point. Then you
do the same again. Little by little, you get higher and higher. After a while, every
step you can take is down, and you stop. That’s gradient ascent. If the Himalayas
were just Mount Everest, and Everest was a perfect cone, it would work like a
charm. But more likely, when you get to a place where every step is down,
you’re still very far from the top. You’re just standing on a foothill somewhere,
and you’re stuck. That’s what happens to backprop, except it climbs mountains
in hyperspace instead of 3-D. If your network has a single neuron, just climbing
to better weights one step at a time will get you to the top. But with a multilayer
perceptron, the landscape is very rugged; good luck finding the highest peak.

This was part of the reason Minsky, Papert, and others couldn’t see how to
learn multilayer perceptrons. They could imagine replacing step functions by S
curves and doing gradient descent, but then they were faced with the problem of
local minima of the error. In those days researchers didn’t trust computer
simulations; they demanded mathematical proof that an algorithm would work,
and there’s no such proof for backprop. But what we’ve come to realize is that
most of the time a local minimum is fine. The error surface often looks like the
quills of a porcupine, with many steep peaks and troughs, but it doesn’t really
matter if we find the absolute lowest trough; any one will do. Better still, a local
minimum may in fact be preferable because it’s less likely to prove to have
overfit our data than the global one.

Hyperspace is a double-edged sword. On the one hand, the higher
dimensional the space, the more room it has for highly convoluted surfaces and
local optima. On the other hand, to be stuck in a local optimum you have to be
stuck in every dimension, so it’s more difficult to get stuck in many dimensions
than it is in three. In hyperspace there are mountain passes all over the (hyper)
place. So, with a little help from a human sherpa, backprop can often find its
way to a perfectly good set of weights. It may be only the mystical valley of
Shangri-La, not the sea, but why complain if in hyperspace there are millions of
Shangri-Las, each with billions of mountain passes leading to it?

Beware of attaching too much meaning to the weights backprop finds,
however. Remember that there are probably many very different ones that are
just as good. Learning in multilayer perceptrons is a chaotic process in the sense
that starting in slightly different places can cause you to wind up at very
different solutions. The phenomenon is the same whether the slight difference is
in the initial weights or the training data and manifests itself in all powerful
learners, not just backprop.

We could do away with the problem of local optima by taking out the S
curves and just letting each neuron output the weighted sum of its inputs. That
would make the error surface very smooth, leaving only one minimum—the
global one. The problem, though, is that a linear function of linear functions is
still just a linear function, so a network of linear neurons is no better than a
single neuron. A linear brain, no matter how large, is dumber than a roundworm.
S curves are a nice halfway house between the dumbness of linear functions and
the hardness of step functions.

The perceptron’s revenge

Backprop was invented in 1986 by David Rumelhart, a psychologist at the
University of California, San Diego, with the help of Geoff Hinton and Ronald
Williams. Among other things, they showed that backprop can learn XOR,
enabling connectionists to thumb their noses at Minsky and Papert. Recall the
Nike example: young men and middle-aged women are the most likely buyers of
Nike shoes. We can represent this with a network of three neurons: one that fires
when it sees a young male, another that fires when it sees a middle-aged female,
and another that fires when either of those does. And with backprop we can learn
the appropriate weights, resulting in a successful Nike prospect detector. (So
there, Marvin.)

In an early demonstration of the power of backprop, Terry Sejnowski and
Charles Rosenberg trained a multilayer perceptron to read aloud. Their NETtalk
system scanned the text, selected the correct phonemes according to context, and
fed them to a speech synthesizer. NETtalk not only generalized accurately to
new words, which knowledge-based systems could not, but it learned to speak in
a remarkably human-like way. Sejnowski used to mesmerize audiences at
research meetings by playing a tape of NETtalk’s progress: babbling at first,
then starting to make sense, then speaking smoothly with only the occasional
error. (You can find samples on YouTube by typing “sejnowski nettalk.”)

Neural networks’ first big success was in predicting the stock market.
Because they could detect small nonlinearities in very noisy data, they beat the
linear models then prevalent in finance and their use spread. A typical
investment fund would train a separate network for each of a large number of
stocks, let the networks pick the most promising ones, and then have human
analysts decide which of those to invest in. A few funds, however, went all the
way and let the learners themselves buy and sell. Exactly how all these fared is a
closely guarded secret, but it’s probably not an accident that machine learners
keep disappearing into hedge funds at an alarming rate.

Nonlinear models are important far beyond the stock market. Scientists
everywhere use linear regression because that’s what they know, but more often
than not the phenomena they study are nonlinear, and a multilayer perceptron
can model them. Linear models are blind to phase transitions; neural networks
soak them up like a sponge.

Another notable early success of neural networks was learning to drive a car.
Driverless cars first broke into the public consciousness with the DARPA Grand

Challenges in 2004 and 2005, but a over a decade earlier, researchers at
Carnegie Mellon had already successfully trained a multilayer perceptron to
drive a car by detecting the road in video images and appropriately turning the
steering wheel. Carnegie Mellon’s car managed to drive coast to coast across
America with very blurry vision (thirty by thirty-two pixels), a brain smaller
than a worm’s, and only a few assists from the human copilot. (The project was
dubbed “No Hands Across America.”) It may not have been the first truly self-
driving car, but it did compare favorably with most teenage drivers.

Backprop’s applications are now too many to count. As its fame has grown,
more of its history has come to light. It turns out that, as is often the case in
science, backprop was invented more than once. Yann LeCun in France and
others hit on it at around the same time as Rumelhart. A paper on backprop was
rejected by the leading Al conference in the early 1980s because, according to
the reviewers, Minsky and Papert had already proved that perceptrons don’t
work. In fact, Rumelhart is credited with inventing backprop by the Columbus
test: Columbus was not the first person to discover America, but the last. It turns
out that Paul Werbos, a graduate student at Harvard, had proposed a similar
algorithm in his PhD thesis in 1974. And in a supreme irony, Arthur Bryson and
Yu-Chi Ho, two control theorists, had done the same even earlier: in 1969, the
same year that Minsky and Papert published Perceptrons! Indeed, the history of
machine learning itself shows why we need learning algorithms. If algorithms
that automatically find related papers in the scientific literature had existed in
1969, they could have potentially helped avoid decades of wasted time and
accelerated who knows what discoveries.

Among the many ironies of the history of the perceptron, perhaps the saddest
is that Frank Rosenblatt died in a boating accident in Chesapeake Bay in 1969
and never lived to see the second act of his creation.

A complete model of a cell

A living cell is a quintessential example of a nonlinear system. The cell performs
all of its functions by turning raw materials into end products through a complex
web of chemical reactions. We can discover the structure of this network using
symbolist methods like inverse deduction, as we saw in the last chapter, but to
build a complete model of a cell we need to get quantitative, learning the
parameters that couple the expression levels of different genes, relate

environmental variables to internal ones, and so on. This is difficult because
there is no simple linear relationship between these quantities. Rather, the cell
maintains its stability through interlocking feedback loops, leading to very
complex behavior. Backpropagation is well suited to this problem because of its
ability to efficiently learn nonlinear functions. If we had a complete map of the
cell’s metabolic pathways and enough observations of all the relevant variables,
backprop could in principle learn a detailed model of the cell, with a multilayer
perceptron to predict each variable as a function of its immediate causes.

For the foreseeable future, however, we’ll have only partial knowledge of
cells’ metabolic networks and be able to observe only a fraction of the variables
we’d like to. Learning useful models despite all this missing information, and
despite all the inevitable inconsistencies in the information that is available, calls
for Bayesian methods, which we’ll delve into in Chapter 6. The same goes for
making predictions for a particular patient, model in hand: the evidence available
is necessarily noisy and incomplete, and Bayesian inference makes the best of it.
It helps that, if the goal is to cure cancer, we don’t necessarily need to
understand all the details of how tumor cells work, only enough to disable them
without harming normal cells. In Chapter 6, we’ll also see how to orient learning
toward the goal while steering clear of the things we don’t know and don’t need
to know.

More immediately, we know we can use inverse deduction to infer the
structure of the cell’s networks from data and previous knowledge, but there’s a
combinatorial explosion of ways to apply it, and we need a strategy. Since
metabolic networks were designed by evolution, perhaps simulating it in our
learning algorithms is the way to go. In the next chapter, we’ll see how to do just
that.

Deeper into the brain

When backprop first hit the streets, connectionists had visions of quickly
learning larger and larger networks until, hardware permitting, they amounted to
artificial brains. It didn’t turn out that way. Learning networks with one hidden
layer was fine, but after that things soon got very difficult. Networks with a few
layers worked only if they were carefully designed for the application (character
recognition, say). Beyond that, backprop broke down. As we add layers, the
error signal becomes more and more diffuse, like a river branching into smaller

and smaller tributaries, until we’re down to individual raindrops that just don’t
register. Learning with dozens or hundreds of hidden layers, like the brain,
remained a distant dream, and by the mid-1990s, the excitement for multilayer
perceptrons had petered out. A hard core of connectionists soldiered on, but by
and large the attention of the machine-learning field moved elsewhere. (We’ll
survey those lands in Chapters 6 and 7.)

Today, however, connectionism is resurgent. We’re learning deeper
networks than ever before, and they’re setting new standards in vision, speech
recognition, drug discovery, and other areas. The new field of deep learning is
on the front page of the New York Times. Look under the hood, and . . . surprise:
it’s the trusty old backprop engine, still humming. What changed? Nothing
much, say the critics: just faster computers and bigger data. To which Hinton
and others reply: exactly, we were right all along!

In truth, connectionists have made genuine progress. One of the protagonists
of this latest twist in the connectionist roller coaster is an unassuming little
device called an autoencoder. An autoencoder is a multilayer perceptron whose
output is the same as its input. In goes a picture of your grandmother and out
comes—the same picture of your grandmother. At first this seems like a silly
idea: What use could such a contraption possibly be? The key is to make the
hidden layer much smaller than the input and output layers, so the network can’t
just learn to copy the input to the hidden layer and the hidden layer to the output,
in which case we may as well throw the whole thing out. But if the hidden layer
is small, something interesting happens: the network is forced to encode the
input in fewer bits, so it can be represented in the hidden layer, and then decode
those bits back to full size. It could, for example, learn to encode a million-pixel
image of your grandmother as just the seven-character word grandma, or some
such short code invented by itself, and simultaneously learn to decode
“grandma” into an image of dear old granny. So an autoencoder is not unlike a
file compression tool, with two important advantages: it figures out how to
compress things on its own, and like Hopfield networks, it can turn a noisy,
distorted image into a nice clean one.

Autoencoders were known in the 1980s, but they were very hard to learn,
even though they had a single hidden layer. Figuring out how to pack a lot of
information into the same few bits is a hellishly difficult problem (one code for
your grandmother, a slightly different one for your grandfather, another one for
Jennifer Aniston, etc). The landscape in hyperspace is just too rugged to get to a
good peak; the hidden units need to learn what amounts to too many exclusive-

ORs of the inputs. So autoencoders didn’t really catch on. The trick that took
over a decade to discover was to make the hidden layer larger than the input and
output ones. Huh? Actually, that’s only half the trick: the other half is to force all
but a few of the hidden units to be off at any given time. This still prevents the
hidden layer from just copying the input, and—crucially—it makes learning
much easier. If we allow different bits to represent different inputs, the inputs no
longer have to compete to set the same bits. Also, the network now has many
more parameters, so the hyperspace you’re in has many more dimensions, and
you have many more ways to get out of what would otherwise be local maxima.
This is called a sparse autoencoder, and it’s a neat trick.

We haven’t seen any deep learning yet, though. The next clever idea is to
stack sparse autoencoders on top of each other like a club sandwich. The hidden
layer of the first autoencoder becomes the input/output layer of the second one,
and so on. Because the neurons are nonlinear, each hidden layer learns a more
sophisticated representation of the input, building on the previous one. Given a
large set of face images, the first autoencoder learns to encode local features like
corners and spots, the second uses those to encode facial features like the tip of a
nose or the iris of an eye, the third one learns whole noses and eyes, and so on.
Finally, the top layer can be a conventional perceptron that learns to recognize
your grandmother from the high-level features provided by the layer below it—
much easier than using only the crude information provided by a single hidden
layer or than trying to backpropagate through all the layers at once. The Google
Brain network of New York Times fame is a nine-layer sandwich of autoencoders
and other ingredients that learns to recognize cats from YouTube videos. At one
billion connections, it was at the time the largest network ever learned. It’s no
surprise that Andrew Ng, one of the project’s principals, is also one of the
leading proponents of the idea that human intelligence boils down to a single
algorithm, and all we need to do is figure it out. Ng, whose affability belies a
fierce ambition, believes that stacked sparse autoencoders can take us closer to
solving Al than anything that came before.

Stacked autoencoders are not the only kind of deep learner. Another is based
on Boltzmann machines, and another—convolutional neural networks—on a
model of the visual cortex. Despite their remarkable successes, however, all of
these are still a far cry from the brain. The Google network can recognize cat
faces seen head on; humans can recognize cats in any pose and even when the
face is hard to make out. The Google network is still pretty shallow; only three
of its nine layers are autoencoders. A multilayer perceptron is a passable model

of the cerebellum, the part of the brain responsible for low-level motor control,
but the cortex is another story. It’s missing the backward connections needed to
propagate errors, for one, and yet it’s where the real learning wizardry resides. In
his book On Intelligence, Jeff Hawkins advocated designing algorithms closely
based on the organization of the cortex, but so far none of these algorithms can
compete with today’s deep networks.

This may change as our understanding of the brain improves. Inspired by the
human genome project, the new field of connectomics seeks to map every
synapse in the brain. The European Union is investing a billion euros to build a
soup-to-nuts model of it. America’s BRAIN initiative, with $100 million in
funding in 2014 alone, has similar aims. Nevertheless, symbolists are very
skeptical of this path to the Master Algorithm. Even if we can image the whole
brain at the level of individual synapses, we (ironically) need better machine-
learning algorithms to turn those images into wiring diagrams; doing it by hand
is out of the question. Worse than that, even if we had a complete map of the
brain, we would still be at a loss to figure out what it does. The nervous system
of the C. elegans worm consists of only 302 neurons and was completely
mapped in 1986, but we still have only a fragmentary understanding of what it
does. We need higher-level concepts to make sense of the morass of low-level
details, weeding out the ones that are specific to wetware or just quirks of
evolution. We don’t build airplanes by reverse engineering feathers, and
airplanes don’t flap their wings. Rather, airplane designs are based on the
principles of aerodynamics, which all flying objects must obey. We still do not
understand those analogous principles of thought.

Perhaps connectomics is overkill. Some connectionists have been overheard
claiming that backprop is the Master Algorithm and we just need to scale it up.
But symbolists pour scorn on this notion. They point to a long list of things that
humans can do but neural networks can’t. Take commonsense reasoning. It
involves combining pieces of information that may have never been seen
together before. Did Mary eat a shoe for lunch? No, because Mary is a person,
people only eat edible things, and shoes are not edible. Symbolic systems have
no trouble with this—they just chain the relevant rules—but multilayer
perceptrons can’t do it; once they’re done learning, they just compute the same
fixed function over and over again. Neural networks are not compositional, and
compositionality is a big part of human cognition. Another big issue is that
humans—and symbolic models like sets of rules and decision trees—can explain
their reasoning, while neural networks are big piles of numbers that no one can

understand.

But if humans have all these abilities that their brains didn’t learn by
tweaking synapses, where did they come from? Unless you believe in magic, the
answer must be evolution. If you’re a connectionism skeptic and you have the
courage of your convictions, it behooves you to figure out how evolution learned
everything a baby knows at birth—and the more you think is innate, the taller
the order. But if you can figure it out and program a computer to do it, it would
be churlish to deny that you’ve invented at least one version of the Master
Algorithm.

CHAPTER FIVE

fe

Evolution: Nature’s Learning Algorithm

Robotic Park is a massive robot factory surrounded by ten thousand square miles
of jungle, urban and otherwise. Ringing that jungle is the tallest, thickest wall
ever built, bristling with sentry posts, searchlights, and gun turrets. The wall has
two purposes: to keep trespassers out and the park’s inhabitants—millions of
robots battling for survival and control of the factory—within. The winning
robots get to spawn, their reproduction accomplished by programming the banks
of 3-D printers inside. Step-by-step, the robots become smarter, faster—and
deadlier. Robotic Park is run by the US Army, and its purpose is to evolve the
ultimate soldier.

Robotic Park doesn’t exist yet, but it may someday. I suggested it as a
thought experiment at a DARPA workshop a few years ago, and one of the
military brass present said matter-of-factly, “That’s feasible.” His willingness
might seem less startling if you consider that the army already runs a full-blown
mockup of an Afghan village in the California desert, complete with villagers,
for training its troops, and a few billion dollars would be a small price to pay for
the ultimate soldier.

The first steps toward Robotic Park have already been taken. Inside Hod
Lipson’s Creative Machines Lab at Cornell University, fantastically shaped
robots are learning to crawl and fly, probably even as you read this. One looks
like a slithering tower of rubber bricks, another like a helicopter with dragonfly
wings, yet another like a shape-shifting Tinkertoy. These robots were not
designed by any human engineer but created by evolution, the same process that

gave rise to the diversity of life on Earth. Although the robots initially evolve
inside a computer simulation, once they look proficient enough to make it in the
real world, solid versions are automatically fabricated by 3-D printing. These are
not yet ready to take over the world, but they’ve come a long way from the
primordial soup of simulated parts they started with.

The algorithm that evolved these robots was invented by Charles Darwin in
the nineteenth century. He didn’t think of it as an algorithm at the time, partly
because a key subroutine was still missing. Once James Watson and Francis
Crick provided it in 1953, the stage was set for the second coming of evolution:
in silico instead of in vivo, and a billion times faster. Its prophet was a ruddy-
faced, perpetually grinning midwesterner by the name of John Holland.

Darwin’s algorithm

Like many other early machine-learning researchers, Holland started out
working on neural networks, but his interests took a different turn when, while a
graduate student at the University of Michigan, he read Ronald Fisher’s classic
treatise The Genetical Theory of Natural Selection. In it, Fisher, who was also
the founder of modern statistics, formulated the first mathematical theory of
evolution. Brilliant as it was, Holland felt that Fisher’s theory left out the
essence of evolution. Fisher considered each gene in isolation, but an organism’s
fitness is a complex function of all its genes. If genes are independent, the
relative frequencies of their variants rapidly converge to the maximum fitness
point and remain in equilibrium thereafter. But if genes interact, evolution—the
search for maximum fitness—is vastly more complex. With one thousand genes,

each with two variants, the genome has 21000 possible states, and no planet in
the universe is remotely large or ancient enough to have tried them all out. Yet
on Earth evolution has managed to come up with some remarkably fit
organisms, and Darwin’s theory of natural selection explains how, at least
qualitatively. Holland decided to turn it into an algorithm.

But first he had to graduate. Prudently, he picked a more conservative topic
for his dissertation—Boolean circuits with cycles—and in 1959 he earned the
world’s first PhD in computer science. His PhD advisor, Arthur Burks,
nevertheless encouraged Holland’s interest in evolutionary computation and was
instrumental in getting him a faculty job at Michigan and shielding him from
senior colleagues who didn’t think that stuff was computer science. Burks

himself was so open-minded because he had been a close collaborator of John
von Neumann, who had proved the possibility of self-reproducing machines.
Indeed, it had fallen to him to complete the work when von Neumann died of
cancer in 1957. That von Neumann could prove that such machines are possible
was quite remarkable, given the primitive state of genetics and computer science
at the time. But his automaton just made exact copies of itself; evolving
automata had to wait for Holland.

The key input to a genetic algorithm, as Holland’s creation came to be
known, is a fitness function. Given a candidate program and some purpose it is
meant to fill, the fitness function assigns the program a numeric score reflecting
how well it fits the purpose. In natural selection, it’s questionable whether fitness
can be interpreted this way: while the fitness of a wing for flight makes intuitive
sense, evolution as a whole has no known purpose. Nevertheless, in machine
learning having something like a fitness function is a no-brainer. If we need a
program that can diagnose a patient, one that correctly diagnoses 60 percent of
the patients in our database is better than one that only gets it right 55 percent of
the time, and thus a possible fitness function is the fraction of correctly
diagnosed cases.

In this regard, genetic algorithms are a lot like selective breeding. Darwin
opened The Origin of Species with a discussion of it, as a stepping-stone to the
more difficult concept of natural selection. All the domesticated plants and
animals we take for granted today are the result of selecting and mating,
generation after generation, the organisms that best served our purposes: the corn
with the largest corncobs, the sweetest fruit trees, the shaggiest sheep, the
hardiest horses. Genetic algorithms do the same, except they breed programs
instead of living creatures, and a generation is a few seconds of computer time
instead of a creature’s lifetime.

The fitness function encapsulates the human’s role in the process. But the
more subtle part is nature’s. Starting with a population of not-very-fit individuals
—possibly completely random ones—the genetic algorithm has to come up with
variations that can then be selected according to fitness. How does nature do
that? Darwin didn’t know. This is where the genetic part of the algorithm comes
in. In the same way that DNA encodes an organism as a sequence of base pairs,
we can encode a program as a string of bits. Instead of 0 and 1, the DNA
alphabet has four characters—the four bases adenine, thymine, cytosine, and
guanine—but that’s a superficial difference. Variations, whether in DNA
sequences or bit strings, can be generated in several ways. The simplest

approach is point mutation, flipping a random bit in the string or changing a
single base in a stretch of DNA. But for Holland, the real power of genetic
algorithms lay in something more complicated: sex.

Stripped down to its bare essentials (no giggles, please), sexual reproduction
consists of swapping material between chromosomes from the mother and
father, a process called crossing over. This produces two new chromosomes, one
of which consists of the mother’s chromosome up to the crossover point and the
father’s thereafter, and the other one is the opposite:

PARENTS OFFSPRING
(M) Oy "Ill [T -
¢® sEEEEEEEEE Illl' %IZD EEEEE)

A genetic algorithm works by mimicking this process. In each generation, it
mates the fittest individuals, producing two offspring from each pair of parents
by crossing over their bit strings at a random point. After applying point
mutations to the new strings, it lets them loose in its virtual world. Each one
returns with a fitness score, and the process repeats. Each generation is fitter
than the previous one, and the process terminates when the desired fitness is
reached or time runs out.

For example, suppose we want to evolve a rule for filtering spam. If ten
thousand different words appear in the training data, each candidate rule can be
represented by a string of twenty thousand bits, two for each word. The first bit
corresponding to the word free is one if e-mails containing free are allowed to
match the rule, and zero if they’re not. The second bit is the opposite: one if e-
mails not containing free are allowed to match, and zero if they’re not. So if both
bits are one, e-mails are allowed to match the rule regardless of whether they
contain free, and the rule effectively has no condition on that word. On the other
hand, if both bits are zero, no e-mails match the rule, since one or the other bit
always fails, and all e-mails get through the filter (yikes). Overall, an e-mail
matches a rule only if its entire pattern of present and absent words is allowed by
the rule. A rule’s fitness is, say, the percentage of e-mails it classifies correctly.
Starting from a population of random strings, each representing a rule with
random conditions, the genetic algorithm can now evolve better and better rules
by repeatedly crossing over and mutating the fittest strings in each generation.
For example, if the current population includes the rules If the e-mail contains

the word free then it’s spam and If the e-mail contains the word easy then it’s
spam, crossing them over will yield the probably fitter rule If the e-mail contains
free and easy then it’s spam, provided the crossover point does not fall between
the two bits corresponding to one of those words. It will also yield the rule All e-
mail is spam, which results from dropping both conditions, but that rule is
unlikely to have much progeny in the next generation.

Since our goal is to produce the best spam filter we can, as opposed to
faithfully simulating real natural selection, we can cheat liberally by modifying
the algorithm to fit our needs. One way in which genetic algorithms routinely
cheat is by allowing immortality. (Too bad we can’t do that in real life.) That
way, a highly fit individual doesn’t simply compete to reproduce within its own
generation, but also with its children, and then its grandchildren, great-
grandchildren, and so on, as long as it remains one of the fittest individuals in
the population. In contrast, in the real world the best a highly fit individual can
do is pass on half its genes to many children, each of which will probably be less
fit because of the genes it inherited from its other parent. Immortality avoids this
backsliding and with any luck, lets the algorithm reach the desired fitness
sooner. Of course, since the fittest humans in history as measured by number of
descendants are the likes of Genghis Khan—ancestor to one in two hundred men
alive today—perhaps it’s not so bad that in real life immortality is verboten.

If we want to evolve a whole set of spam-filtering rules, not just one, we can
represent a candidate set of n rules by a string of n % 20,000 bits (20,000 for each
rule, assuming ten thousand different words in the data, as before). Rules
containing 00 for some word effectively disappear from the rule set, since they
don’t match any e-mails, as we saw before. If an e-mail matches any rule in the
set, it’s classified as spam; otherwise it’s legit. We can still let fitness be the
percentage of correctly classified e-mails, but to combat overfitting, we’ll
probably want to subtract from it a penalty proportional to the total number of
active conditions in the rule set.

We can get even fancier by allowing rules for intermediate concepts to
evolve, and then chaining these rules at performance time. For example, we
could evolve the rules If the e-mail contains the word loan then it’s a scam and If
the e-mail is a scam then it’s spam. Since a rule’s consequent is no longer
always spam, this requires introducing additional bits in rule strings to represent
their consequents. Of course, the computer doesn’t literally use the word scam; it
just comes up with some arbitrary bit string to represent the concept, but that’s
good enough for our purposes. Sets of rules like this, which Holland called

classifier systems, are one of the workhorses of the machine-learning tribe he
founded: the evolutionaries. Like multilayer perceptrons, classifier systems face
the credit-assignment problem—what is the fitness of rules for intermediate
concepts?—and Holland devised the so-called bucket brigade algorithm to solve
it. Nevertheless, classifier systems are much less widely used than multilayer
perceptrons.

Compared to the simple model in Fisher’s book, genetic algorithms are quite
a leap forward. Darwin lamented his lack of mathematical ability, but if he had
lived a century later he probably would have yearned for programming prowess
instead. Indeed, capturing natural selection by a set of equations is extremely
difficult, but expressing it as an algorithm is another matter, and can shed light
on many otherwise vexing questions. Why do species appear suddenly in the
fossil record? Where’s the evidence that they evolved gradually from earlier
species? In 1972, Niles Eldredge and Stephen Jay Gould proposed that evolution
consists of a series of “punctuated equilibria,” alternating long periods of stasis
with short bursts of rapid change, like the Cambrian explosion. This sparked a
heated debate, with critics of the theory nicknaming it “evolution by jerks” and
Eldredge and Gould retorting that gradualism is “evolution by creeps.”
Experience with genetic algorithms lends support to the jerks. If you run a
genetic algorithm for one hundred thousand generations and observe the
population at one-thousand-generation intervals, the graph of fitness against time
will probably look like an uneven staircase, with sudden improvements followed
by flat periods that tend to become longer over time. It’s also not hard to see
why. Once the algorithm reaches a local maximum of fitness—a peak in the
fitness landscape—it will stay there for a long time until a lucky mutation or
crossover lands an individual on the slope to a higher peak, at which point that
individual will multiply and climb up the slope with each passing generation.
And the higher the current peak, the longer before that happens. Of course,
natural evolution is more complicated than this: for one, the environment may
change, either physically or because other organisms have themselves evolved,
and an organism that was on a fitness peak may suddenly find itself under
pressure to evolve again. So, while helpful, current genetic algorithms are far
from the end of the story.

The exploration-exploitation dilemma

Notice how much genetic algorithms differ from multilayer perceptrons.
Backprop entertains a single hypothesis at any given time, and the hypothesis
changes gradually until it settles into a local optimum. Genetic algorithms
consider an entire population of hypotheses at each step, and these can make big
jumps from one generation to the next, thanks to crossover. Backprop proceeds
deterministically after setting the initial weights to small random values. Genetic
algorithms, in contrast, are full of random choices: which hypotheses to keep
alive and cross over (with fitter hypotheses being more likely candidates), where
to cross two strings, which bits to mutate. Backprop learns weights for a
predefined network architecture; denser networks are more flexible but also
harder to learn. Genetic algorithms make no a priori assumptions about the
structures they will learn, other than their general form.

Because of all this, genetic algorithms are much less likely than backprop to
get stuck in a local optimum and in principle better able to come up with
something truly new. But they are also much more difficult to analyze. How do
we know a genetic algorithm will get somewhere meaningful instead of
randomly walking around like the proverbial drunkard? The key is to think in
terms of building blocks. Every subset of a string’s bits potentially encodes a
useful building block, and when we cross over two strings, those building blocks
come together into a larger one, which in turn becomes grist for the mill.
Holland likes to use police sketches to illustrate the power of building blocks. In
the days before computers, a police artist could quickly put together a portrait of
a suspect from eyewitness interviews by selecting a mouth from a set of paper
strips depicting typical mouth shapes and doing the same for the eyes, nose,
chin, and so on. With only ten building blocks and ten options for each, this
system would allow for ten billion different faces, more than there are people on
Earth.

In machine learning, as elsewhere in computer science, there’s nothing better
than getting such a combinatorial explosion to work for you instead of against
you. What’s clever about genetic algorithms is that each string implicitly
contains an exponential number of building blocks, known as schemas, and so
the search is a lot more efficient than it seems. This is because every subset of
the string’s bits is a schema, representing some potentially fit combination of
properties, and a string has an exponential number of subsets. We can represent
a schema by replacing the bits in the string that aren’t part of it with *. For
example, the string 110 contains the schemas ***, **(Q, *1* 1** *10, 11%*, 1*0,
and 110. We get a different schema for every different choice of bits to include;

since we have two choices for each bit (include/don’t include), we have 2"
schemas. Conversely, a particular schema may be represented in many different
strings in a population, and is implicitly evaluated every time they are. Suppose
that a hypothesis’s probability of surviving into the next generation is
proportional to its fitness. Holland showed that, in this case, the fitter a schema’s
representatives in one generation are compared to the average, the more of them
we can expect to see in the next generation. So, while the genetic algorithm
explicitly manipulates strings, it implicitly searches the much larger space of
schemas. Over time, fitter schemas come to dominate the population, and so
unlike the drunkard, the genetic algorithm finds its way home.

One of the most important problems in machine learning—and life—is the
exploration-exploitation dilemma. If you’ve found something that works, should
you just keep doing it? Or is it better to try new things, knowing it could be a
waste of time but also might lead to a better solution? Would you rather be a
cowboy or a farmer? Start a company or run an existing one? Go steady or play
the field? A midlife crisis is the yearning to explore after many years spent
exploiting. On an impulse, you fly to Vegas, ready to gamble away your life’s
savings on the chance of becoming a millionaire. You enter the first casino and
face a row of slot machines. The one to play is the one that gives you the best
payoff on average, but you don’t know which that is. You have to try each one
enough times to figure it out. But if you do this for too long, you waste your
money on losing machines. Conversely, if you jump the gun and pick a machine
that looked good by chance on the first few turns but is in fact not the best one,
you waste your money playing it for the rest of the night. That’s the exploration-
exploitation dilemma. Each time you play, you have to choose between
repeating the best move you’ve found so far, which gives you the best payoff, or
trying other moves, which gather information that may lead to even better
payoffs. With two slot machines, Holland showed that the optimal strategy is to
flip a biased coin each time, where the coin becomes exponentially more biased
as you go along. (Don’t sue me if it doesn’t work for you, though. Remember the
house always wins in the end.) The better a slot machine looks, the more you
should play it, but never completely give up on the other one, in case it turns out
to be the best one after all.

A genetic algorithm is like the ringleader of a group of gamblers, playing slot
machines in every casino in town at the same time. Two schemas compete with
each other if they include the same bits and differ in at least one of them, like
*10 and *11, and n competing schemas are like n slot machines. Every set of

competing schemas is a casino, and the genetic algorithm simultaneously figures
out the winning machine in every casino, following the optimal strategy of
playing the better-seeming machines with exponentially increasing frequency.
Pretty smart.

In The Hitchhiker’s Guide to the Galaxy, an alien race builds a massive
supercomputer to answer the ultimate question, and after a long time the
computer spits out “42.” But the computer also points out that the aliens don’t
know what the question is, so they build an even bigger computer to figure that
out. This computer—otherwise known as planet Earth—is unfortunately
destroyed to make way for a space freeway minutes before finishing its
multimillion-year computation. We can only guess at the question now, but
perhaps it was: Which slot machine should you play?

Survival of the fittest programs

For the first few decades, the genetic algorithms community consisted mainly of
John Holland, his students, and their students. Circa 1983, the biggest problem
genetic algorithms had been able to solve was learning to control gas pipeline
systems. But then, at around the same time neural networks were making their
comeback, interest in evolutionary computation took off. The first international
conference on genetic algorithms was held in Pittsburgh in 1985, and a
Cambrian explosion of genetic algorithm variants was under way. Some of these
tried to model evolution more closely—the basic genetic algorithm was only a
very crude approximation, after all—and others radiated in very different
directions, crossing over evolutionary ideas with computer science concepts that
would have bemused Darwin.

One of Holland’s more remarkable students was John Koza. In 1987, while
flying back to California from a conference in Italy, he had a lightbulb moment.
Instead of evolving comparatively simple things like If . . . then . . . rules and gas
pipeline controllers, why not evolve full-blown computer programs? And if
that’s the goal, why stick with bit strings as the representation? A program is
really a tree of subroutine calls, so better to directly cross over those subtrees
than to shoehorn them into bit strings and run the risk of destroying perfectly
good subroutines when you cross them over at a random point.

For example, suppose you want to evolve a program to compute the duration
of a planet’s year, T, from its average distance to the sun, D. According to

Kepler’s third law, T is the square root of D cubed, times a constant C that
depends on the units you use for time and distance. A genetic algorithm should
be able to discover this by looking at Tycho Brahe’s data on planetary motions
like Kepler did. In Koza’s approach, D and C are the leaves of a program tree,
and the operations that combine them, like multiplication and taking the square
root, are the internal nodes. The following program tree correctly computes T:

©
@,
©

AE
(0] (0]

In genetic programming, as Koza called his method, we cross over two program
trees by randomly swapping two of their subtrees. For example, crossing over
these two trees at the highlighted nodes yields the correct program for computing
T as one of the children:

® n
Crossover
\ / @
N 0]
(D (D] ()

We can measure a program’s fitness (or lack thereof) by the distance between its
output and the correct one on the training data. For example, if the program says
an Earth year is three hundred days, that would subtract sixty-five points from its
fitness. Starting with a population of random program trees, genetic
programming uses crossover, mutation, and survival to gradually evolve better
programs until it’s satisfied.

Of course, computing the length of a planet’s year is a very simple problem,
involving only multiplication and square roots. In general, program trees can
include the full range of programming constructs, such as If . . . then . . .
statements, loops, and recursion. A more illustrative example of what genetic
programming can do is figuring out the sequence of actions a robot needs to
perform to achieve some goal. Suppose I ask my officebot to bring me a stapler
from the closet down the hall. The robot has a large set of behaviors available to
it, such as moving down a hallway, opening a door, picking up an object, and so
on. Each of these can in turn be composed of various sub-behaviors: move the
robot’s hand toward the object, or grasp it at various possible points, for
example. Each behavior may be executed or not depending on the results of
previous behaviors, may need to be repeated some number of times, and so on.
The challenge is to assemble the right structure of behaviors and sub-behaviors,
together with the parameters for each, such as how far to move the hand. Starting
with the robot’s “atomic” behaviors and their allowed combinations, genetic
programming can assemble a complex behavior that accomplishes the desired
goal. A number of researchers have evolved strategies for robot soccer players in
this way.

One consequence of crossing over program trees instead of bit strings is that
the resulting programs can have any size, making the learning more flexible. The
overall tendency is for bloat, however, with larger and larger trees growing as
evolution goes on longer (also known as “survival of the fattest”). Evolutionaries

can take comfort from the fact that human-written programs are no different
(Microsoft Windows: forty-five million lines of code and counting), and that
human-made code doesn’t allow a solution as simple as adding a complexity
penalty to the fitness function.

Genetic programming’s first success, in 1995, was in designing electronic
circuits. Starting with a pile of electronic components such as transistors,
resistors, and capacitors, Koza’s system reinvented a previously patented design
for a low-pass filter, a circuit that can be used for things like enhancing the bass
on a dance-music track. Since then he’s made a sport of reinventing patented
devices, turning them out by the dozen. The next milestone came in 2005, when
the US Patent and Trademark Office awarded a patent to a genetically designed
factory optimization system. If the Turing test had been to fool a patent examiner
instead of a conversationalist, then January 25, 2005, would have been a date for
the history books.

Koza’s confidence stands out even in a field not known for its shrinking
violets. He sees genetic programming as an invention machine, a silicon Edison
for the twenty-first century. He and other evolutionaries believe it can learn any
program, making it their entry in the Master Algorithm sweepstakes. In 2004,
they instituted the annual Humie Awards to recognize “human-competitive”
genetic creations; thirty-nine have been awarded to date.

What is sex for?

Despite their successes, and the insights they’ve provided on issues like
gradualism versus punctuated equilibria, genetic algorithms have left one great
mystery unsolved: the role of sex in evolution. Evolutionaries set great store by
crossover, but members of the other tribes think it’s not worth the trouble. None
of Holland’s theoretical results show that crossover actually helps; mutation
suffices to exponentially increase the frequency of the fittest schemas in the
population over time. And the “building blocks” intuition is appealing but
quickly runs into trouble, even when genetic programming is used. As larger
blocks evolve, crossover also becomes increasingly likely to break them up.
Also, once a highly fit individual appears, its descendants tend to quickly take
over the population, crowding out potentially better schemas that were trapped in
overall less fit individuals. This effectively reduces the search to variations of
the fitness champ. Researchers have come up with a number of schemes for

preserving diversity in the population, but the results so far are inconclusive.
Engineers certainly use building blocks extensively, but combining them
involves, well, a lot of engineering; it’s not just a matter of throwing them
together any old way, and it’s not clear crossover can do the trick.

Eliminating sex would leave evolutionaries with only mutation to power
their engine. If the size of the population is substantially larger than the number
of genes, chances are that every point mutation is represented in it, and the
search becomes a type of hill climbing: try all possible one-step variations, pick
the best one, and repeat. (Or pick several of the best variations, in which case it’s
called beam search.) Symbolists, in particular, use this all the time to learn sets
of rules, although they don’t think of it as a form of evolution. To avoid getting
trapped in local maxima, hill climbing can be enhanced with randomness (make
a downhill move with some probability) and random restarts (after a while, jump
to a random state and continue from there). Doing this is enough to find good
solutions to problems; whether the benefit of adding crossover to it justifies the
extra computational cost remains an open question.

No one is sure why sex is pervasive in nature, either. Several theories have
been proposed, but none is widely accepted. The leader of the pack is the Red
Queen hypothesis, popularized by Matt Ridley in the eponymous book. As the
Red Queen said to Alice in Through the Looking Glass, “It takes all the running
you can do, to keep in the same place.” In this view, organisms are in a perpetual
arms race with parasites, and sex helps keep the population varied, so that no
single germ can infect all of it. If this is the answer, then sex is irrelevant to
machine learning, at least until learned programs have to vie with computer
viruses for processor time and memory. (Intriguingly, Danny Hillis claims that
deliberately introducing coevolving parasites into a genetic algorithm can help it
escape local maxima by gradually ratcheting up the difficulty, but no one has
followed up on this yet.) Christos Papadimitriou and colleagues have shown that
sex optimizes not fitness but what they call mixability: a gene’s ability to do well
on average when combined with other genes. This can be useful when the fitness
function is either not known or not constant, as in natural selection, but in
machine learning and optimization, hill climbing tends to do better.

The problems for genetic programming do not end there. Indeed, even its
successes might not be as genetic as evolutionaries would like. Take circuit
design, which was genetic programming’s emblematic success. As a rule, even
relatively simple designs require an enormous amount of search, and it’s not
clear how much the results owe to brute force rather than genetic smarts. To

address the growing chorus of critics, Koza included in his 1992 book Genetic
Programming experiments showing that genetic programming beat randomly
generating candidates on Boolean circuit synthesis problems, but the margin of
victory was small. Then, at the 1995 International Conference on Machine
Learning (ICML) in Lake Tahoe, California, Kevin Lang published a paper
showing that hill climbing beat genetic programming on the same problems,
often by a large margin. Koza and other evolutionaries had repeatedly tried to
publish papers in ICML, a leading venue in the field, but to their increasing
frustration they kept being rejected due to insufficient empirical validation.
Already frustrated with his papers being rejected, seeing Lang’s paper made
Koza blow his top. On short order, he produced a twenty-three-page paper in
two-column ICML format refuting Lang’s conclusions and accusing the ICML
reviewers of scientific misconduct. He then placed a copy on every seat in the
conference auditorium. Depending on your point of view, either Lang’s paper or
Koza’s response was the last straw; regardless, the Tahoe incident marked the
final divorce between the evolutionaries and the rest of the machine-learning
community, with the evolutionaries moving out of the house. Genetic
programmers started their own conference, which merged with the genetic
algorithms conference to form GECCO, the Genetic and Evolutionary
Computing Conference. For its part, the machine-learning mainstream largely
forgot them. A sad dénouement, but not the first time in history that sex is to
blame for a breakup.

Sex may not have succeeded in machine learning, but as a consolation, it has
played a prominent role in the evolution of technology in other ways.
Pornography was the unacknowledged “killer app” of the World Wide Web, not
to mention the printing press, photography, and video before it. The vibrator was
the first handheld electrical device, predating the cell phone by a century.
Scooters took off in postwar Europe, particularly Italy, because they let young
couples get away from their families. Facilitating dating was surely one of the
“killer apps” of fire when Homo erectus discovered it a million years ago; and
equally surely, a key driver of increasing realism in humanlike robots will be the
sexbot industry. Sex just seems to be the end, rather than the means, of
technological evolution.

Nurturing nature

Evolutionaries and connectionists have something important in common: they
both design learning algorithms inspired by nature. But then they part ways.
Evolutionaries focus on learning structure; to them, fine-tuning an evolved
structure by optimizing parameters is of secondary importance. In contrast,
connectionists prefer to take a simple, hand-coded structure with lots of
connections and let weight learning do all the work. This is machine learning’s
version of the nature versus nurture controversy, and there are good arguments
on both sides.

On the one hand, evolution has produced many amazing things, none more
amazing than you. With or without crossover, evolving structure is an essential
part of the Master Algorithm. The brain can learn anything, but it can’t evolve a
brain. If we thoroughly understood its architecture, we could just implement it in
hardware, but we’re very far from that; getting an assist from computer-
simulated evolution is a no-brainer. What’s more, we also want to evolve the
brains of robots, systems with arbitrary sensors, and super-Als. There’s no
reason to stick with the design of the human brain if there are better ones for
those tasks. On the other hand, evolution is excruciatingly slow. The entire life
of an organism yields only one piece of information about its genome: its fitness,
reflected in the organism’s number of offspring. That’s a colossal waste of
information, which neural learning avoids by acquiring the information at the
point of use (so to speak). As connectionists like Geoff Hinton like to point out,
there’s no advantage to carrying around in the genome information that we can
readily acquire from the senses. When a newborn opens his eyes, the visual
world comes flooding in; the brain just has to organize it. What does need to be
specified in the genome, however, is the architecture of the machine that does
the organizing.

As in the nature versus nurture debate, neither side has the whole answer; the
key is figuring out how to combine the two. The Master Algorithm is neither
genetic programming nor backprop, but it has to include the key elements of
both: structure learning and weight learning. In the conventional view, nature
does its part first—evolving a brain—and then nurture takes it from there, filling
the brain with information. We can easily reproduce this in learning algorithms.
First, learn the structure of the network, using (for example) hill climbing to
decide which neurons connect to which: try adding each possible new
connection to the network, keep the one that most improves performance, and
repeat. Then learn the connection weights using backprop, and your brand-new
brain is ready to use.

But now there’s an important subtlety, in both natural and artificial
evolution. We need to learn weights for every candidate structure along the way,
not just the final one, in order to see how well it does in the struggle for life (in
the natural case) or on the training data (in the artificial case). The structure we
want to select at each step is the one that does best after learning weights, not
before. So in reality, nature does not come before nurture; rather, they alternate,
with each round of “nurture” learning setting the stage for the next round of
“nature” learning and vice versa. Nature evolves for the nurture it gets. The
evolutionary growth of the cortex’s associative areas builds on neural learning in
the sensory areas, without which it would be useless. Goslings follow their
mother around (evolved behavior) but that requires recognizing her (learned
ability). If you’re the first thing they see when they hatch, they’ll follow you
instead, as Konrad Lorenz memorably showed. The newborn brain already
encodes features of the environment but not explicitly; rather, evolution
optimized it to extract those features from the expected input. Likewise, in an
algorithm that iteratively learns both structure and weights, each new structure is
implicitly a function of the weights learned in previous rounds.

Of all the possible genomes, very few correspond to viable organisms. The
typical fitness landscape thus consists of vast flatlands with occasional sharp
peaks, making evolution very hard. If you start out blindfolded in Kansas, you
have no idea which way the Rockies lie, and you’ll wander around for a long
time before you bump into their foothills and start climbing. But if you combine
evolution with neural learning, something interesting happens. If you’re on flat
ground, but not too far from the foothills, neural learning can get you there, and
the closer you are to the foothills, the more likely it will. It’s like being able to
scan the horizon: it won’t help you in Wichita, but in Denver you’ll see the
Rockies in the distance and head that way. Denver now looks a lot fitter than it
did when you were blindfolded. The net effect is to widen the fitness peaks,
making it possible for you to find your way to them from previously very tough
places, like point A in this graph:

Baldwin

Effect

Fitness
Fitness

Genomes Genomes

In biology, this is called the Baldwin effect, after J. M. Baldwin, who proposed it
in 1896. In Baldwinian evolution, behaviors that are first learned later become
genetically hardwired. If dog-like mammals can learn to swim, they have a better
chance to evolve into seals—as they did—than if they drown. Thus individual
learning can influence evolution without recourse to Lamarckism. Geoff Hinton
and Steven Nowlan demonstrated the Baldwin effect in machine learning by
using genetic algorithms to evolve neural network structure and observing that
fitness increased over time only when individual learning was allowed.

He who learns fastest wins

Evolution searches for good structures, and neural learning fills them in: this
combination is the easiest of the steps we’ll take toward the Master Algorithm.
This may come as a surprise to anyone familiar with the never-ending twists and
turns of the nature versus nurture controversy, 2,500 years old and still going
strong. Seeing life through the eyes of a computer clarifies a lot of things,
however. “Nature” for a computer is the program it runs, and “nurture” is the
data it gets. The question of which one is more important is clearly absurd;
there’s no output without both program and data, and it’s not like the output is,
say, 60 percent caused by the program and 40 percent by the data. That’s the
kind of linear thinking that a familiarity with machine learning immunizes you
against.

On the other hand, you may be wondering why we’re not done at this point.
Surely if we’ve combined nature’s two master algorithms, evolution and the
brain, that’s all we could ask for. Unfortunately, what we have so far is only a
very crude cartoon of how nature learns, good enough for a lot of applications
but still a pale shadow of the real thing. For example, the development of the
embryo is a crucial part of life, but there’s no analog of it in machine learning:
the “organism” is a very straightforward function of the genome, and we may be
missing something important there. But another reason is that we wouldn’t be
satisfied even if we had completely figured out how nature learns. For one thing,
it’s too slow. Evolution takes billions of years to learn, and the brain takes a
lifetime. Culture is better: I can distill a lifetime of learning into a book, and you
can read it in a few hours. But learning algorithms should be able to learn in
minutes or seconds. He who learns fastest wins, whether it’s the Baldwin effect
speeding up evolution, verbal communication speeding up human learning, or

computers discovering patterns at the speed of light. Machine learning is the
latest chapter in the arms race of life on Earth, and swifter hardware is only half
the equation. The other half is smarter software.

Most of all, the goal of machine learning is to find the best possible learning
algorithm, by any means available, and evolution and the brain are unlikely to
provide it. The products of evolution have many obvious faults. For example, the
mammalian optic nerve attaches to the front of the retina instead of the back,
causing an unnecessary—and egregious—blind spot right next to the fovea, the
area of sharpest vision.

The molecular biology of living cells is such a mess that molecular biologists
often quip that only people who don’t know any of it could believe in intelligent
design. The architecture of the brain may well have similar faults—the brain has
many constraints that computers don’t, like very limited short-term memory—
and there’s no reason to stay within them. Moreover, we know of many
situations where humans seem to consistently do the wrong thing, as Daniel
Kahneman illustrates at length in his book Thinking, Fast and Slow.

In contrast to the connectionists and evolutionaries, symbolists and
Bayesians do not believe in emulating nature. Rather, they want to figure out
from first principles what learners should do—and that includes us humans. If
we want to learn to diagnose cancer, for example, it’s not enough to say “this is
how nature learns; let’s do the same.” There’s too much at stake. Errors cost
lives. Doctors should diagnose in the most foolproof way they can, with methods
similar to those mathematicians use to prove theorems, or as close to that as they
can manage, given that it’s seldom possible to be that rigorous. They need to
weigh the evidence to minimize the chances of a wrong diagnosis; or more
precisely, so that the costlier an error is, the less likely they are to make it. (For
example, failing to find a tumor that’s really there is potentially much worse than
inferring one that isn’t.) They need to make optimal decisions, not just decisions
that seem good.

This is an instance of a tension that runs throughout much of science and
philosophy: the split between descriptive and normative theories, between “this
is how it is” and “this is how it should be.” Symbolists and Bayesians like to
point out, however, that figuring out how we should learn can also help us to
understand how we do learn because the two are presumably not entirely
unrelated—far from it. In particular, behaviors that are important for survival
and have had a long time to evolve should not be far from optimal. We’re not
very good at answering written questions about probabilities, but we are very

good at instantly choosing hand and arm movements to hit a target. Many
psychologists have used symbolist or Bayesian models to explain aspects of
human behavior. Symbolists dominated the first few decades of cognitive
psychology. In the 1980s and 1990s, connectionists held sway, but now
Bayesians are on the rise.

For the hardest problems—the ones we really want to solve but haven’t been
able to, like curing cancer—pure nature-inspired approaches are probably too
uninformed to succeed, even given massive amounts of data. We can in principle
learn a complete model of a cell’s metabolic networks by a combination of
structure search, with or without crossover, and parameter learning via
backpropagation, but there are too many bad local optima to get stuck in. We
need to reason with larger chunks, assembling and reassembling them as needed
and using inverse deduction to fill in the gaps. And we need our learning to be
guided by the goal of optimally diagnosing cancer and finding the best drugs to
cure it.

Optimal learning is the Bayesians’ central goal, and they are in no doubt that
they’ve figured out how to reach it. This way, please . . .

CHAPTER SIX

fe

In the Church of the Reverend Bayes

The dark hulk of the cathedral rises from the night. Light pours from its stained-
glass windows, projecting intricate equations onto the streets and buildings
beyond. As you approach, you can hear chanting inside. It seems to be Latin, or
perhaps math, but the Babel fish in your ear translates it into English: “Turn the
crank! Turn the crank!” Just as you enter, the chant dissolves into an “Aaaah!”
of satisfaction, and a murmur of “The posterior! The posterior!” You peek
through the crowd. A massive stone tablet towers above the altar with a formula
engraved on it in ten-foot letters:

P(A|B) = P(A) P(B|A) / P(B)

As you stare uncomprehendingly at it, your Google Glass helpfully flashes:
“Bayes’ theorem.” Now the crowd starts to chant “More data! More data!” A
stream of sacrificial victims is being inexorably pushed toward the altar.
Suddenly, you realize that you’re in the middle of it—too late. As the crank
looms over you, you scream, “No! I don’t want to be a data point! Let me
gooooo!”

You wake up in a cold sweat. Lying on your lap is a book entitled The
Master Algorithm. Shaking off the nightmare, you resume reading where you
had left off.

The theorem that runs the world

The path to optimal learning begins with a formula that many people have heard
of: Bayes’ theorem. But here we’ll see it in a whole new light and realize that
it’s vastly more powerful than you’d guess from its everyday uses. At heart,
Bayes’ theorem is just a simple rule for updating your degree of belief in a
hypothesis when you receive new evidence: if the evidence is consistent with the
hypothesis, the probability of the hypothesis goes up; if not, it goes down. For
example, if you test positive for AIDS, your probability of having it goes up.
Things get more interesting when you have many pieces of evidence, such as the
results of multiple tests. To combine them all without suffering a combinatorial
explosion, we need to make simplifying assumptions. Things get even more
interesting when we consider many hypotheses at once, such as all the different
possible diagnoses for a patient. Computing the probability of each disease from
the patient’s symptoms in a reasonable amount of time can take a lot of smarts.
Once we know how to do all these things, we’ll be ready to learn the Bayesian
way. For Bayesians, learning is “just” another application of Bayes’ theorem,
with whole models as the hypotheses and the data as the evidence: as you see
more data, some models become more likely and some less, until ideally one
model stands out as the clear winner. Bayesians have invented fiendishly clever
kinds of models. So let’s get started.

Thomas Bayes was an eighteenth-century English clergyman who, without
realizing it, became the center of a new religion. You may well ask how that
could happen, until you notice that it happened to Jesus, too: Christianity as we
know it was invented by Saint Paul, while Jesus saw himself as the pinnacle of
the Jewish faith. Similarly, Bayesianism as we know it was invented by Pierre-
Simon de Laplace, a Frenchman who was born five decades after Bayes. Bayes
was the preacher who first described a new way to think about chance, but it was
Laplace who codified those insights into the theorem that bears Bayes’s name.

One of the greatest mathematicians of all time, Laplace is perhaps best
known for his dream of Newtonian determinism:

An intelligence that, at a given instant, could comprehend all the forces
by which nature is animated and the respective situation of the beings
that make it up, if moreover it were vast enough to submit these data to
analysis, would encompass in the same formula the movements of the
greatest bodies of the universe and those of the lightest atoms. For such
an intelligence nothing would be uncertain, and the future, like the past,
would be open to its eyes.

This is ironic, since Laplace was also the father of probability theory, which
he believed was just common sense reduced to calculation. At the heart of his
explorations in probability was a preoccupation with Hume’s question. For
example, how do we know the sun will rise tomorrow? It has done so every day
until today, but that’s no guarantee it will continue. Laplace’s answer had two
parts. The first is what we now call the principle of indifference, or principle of
insufficient reason. We wake up one day—at the beginning of time, let’s say,
which for Laplace was five thousand years or so ago—and after a beautiful
afternoon, we see the sun go down. Will it come back? We’ve never seen the sun
rise, and there is no particular reason to believe it will or won’t. Therefore we
should consider the two scenarios equally likely and say that the sun will rise
again with a probability of one-half. But, Laplace went on, if the past is any
guide to the future, every day that the sun rises should increase our confidence
that it will continue to do so. After five thousand years, the probability that the
sun will rise yet again tomorrow should be very close to one, but not quite there,
since we can never be completely certain. From this thought experiment,
Laplace derived his so-called rule of succession, which estimates the probability
that the sun will rise again after having risen n times as (n + 1) / (n + 2). When n
= 0, this is just 2; and as n increases, so does the probability, approaching 1
when n approaches infinity.

This rule arises from a more general principle. Suppose you awake in the
middle of the night on a strange planet. Even though all you can see is the starry
sky, you have reason to believe that the sun will rise at some point, since most
planets revolve around themselves and their sun. So your estimate of the
corresponding probability should be greater than one-half (two-thirds, say). We
call this the prior probability that the sun will rise, since it’s prior to seeing any
evidence. It’s not based on counting the number of times the sun has risen on
this planet in the past, because you weren’t there to see it; rather, it reflects your
a priori beliefs about what will happen, based on your general knowledge of the
universe. But now the stars start to fade, so your confidence that the sun does
rise on this planet goes up, based on your experience on Earth. Your confidence
is now a posterior probability, since it’s after seeing some evidence. The sky
begins to lighten, and the posterior probability takes another leap. Finally, a
sliver of the sun’s bright disk appears above the horizon and perhaps catches
“the Sultan’s turret in a noose of light,” as in the opening verse of the Rubaiyat.
Unless you’re hallucinating, it is now certain that the sun will rise.

The crucial question is exactly how the posterior probability should evolve

as you see more evidence. The answer is Bayes’ theorem. We can think of it in
terms of cause and effect. Sunrise causes the stars to fade and the sky to lighten,
but the latter is stronger evidence of daybreak, since the stars could fade in the
middle of the night due to, say, fog rolling in. So the probability of sunrise
should increase more after seeing the sky lighten than after seeing the stars fade.
In mathematical notation, we say that P(sunrise | lightening-sky), the conditional
probability of sunrise given that the sky is lightening, is greater than P(sunrise |
fading-stars), its conditional probability given that the stars are fading.
According to Bayes’ theorem, the more likely the effect is given the cause, the
more likely the cause is given the effect: if P(lightening-sky | sunrise) is higher
than P(fading-stars | sunrise), perhaps because some planets are far enough from
their sun that the stars still shine after sunrise, then P(sunrise | lightening sky) is
also higher than P(sunrise | fading-stars).

This is not the whole story, however. If we observe an effect that would
happen even without the cause, then surely that’s not much evidence of the cause
being present. Bayes’ theorem incorporates this by saying that P(cause | effect)
goes down with P(effect), the prior probability of the effect (i.e., its probability
in the absence of any knowledge of the causes). Finally, other things being
equal, the more likely a cause is a priori, the more likely it should be a posteriori.
Putting all of these together, Bayes’ theorem says that

P(cause | effect) = P(cause) x P(effect | cause) / P(effect).

Replace cause by A and effect by B and omit the multiplication sign for
brevity, and you get the ten-foot formula in the cathedral.

That’s just a statement of the theorem, not a proof, of course. But the proof is
surprisingly simple. We can illustrate it with an example from medical
diagnosis, one of the “killer apps” of Bayesian inference. Suppose you’re a
doctor, and you’ve diagnosed a hundred patients in the last month. Fourteen of
them had the flu, twenty had a fever, and eleven had both. The conditional
probability of fever given flu is therefore eleven out of fourteen, or 11/14.
Conditioning reduces the size of the universe that we’re considering, in this case
from all patients to only patients with the flu. In the universe of all patients, the
probability of fever is 20/100; in the universe of flu-stricken patients, it’s 11/14.
The probability that a patient has the flu and a fever is the fraction of patients
that have the flu times the fraction of those that have a fever: P(flu, fever) =
P(flu) x P(fever | flu) = 14/100 x 11/14 = 11/100. But we could equally well

have done this the other way around: P(flu, fever) = P(fever) % P(flu | fever).
Therefore, since they’re both equal to P(flu,fever), P(fever) x P(flu | fever) =
P(flu) x P(fever | flu). Divide both sides by P(fever), and you get P(flu | fever) =
P(flu) x P(fever | flu) / P(fever). That’s it! That’s Bayes’ theorem, with flu as the
cause and fever as the effect.

Humans, it turns out, are not very good at Bayesian inference, at least when
verbal reasoning is involved. The problem is that we tend to neglect the cause’s
prior probability. If you test positive for HIV, and the test only gives 1 percent
false positives, should you panic? At first sight, it seems like your chances of
having AIDS are now 99 percent. Yikes! But let’s keep a cool head and apply
Bayes’ theorem step-by-step: P(HIV | positive) = P(HIV) % P(positive | HIV) /
P(positive). P(HIV) is the prevalence of HIV in the general population, which is
about 0.3 percent in the United States. P(positive) is the probability that the test
comes out positive whether or not you have AIDS; let’s say that’s 1 percent. So
P(HIV | positive) = 0.003 x 0.99 / 0.01 = 0.297. That’s very different from 0.99!
The reason is that HIV is rare in the general population. The test coming out
positive increases your chances of having AIDS by two orders of magnitude, but
they’re still less than half. If you test positive for HIV, the right thing to do is to
stay calm and take another, more definitive test. Chances are you’ll be fine.

Bayes’ theorem is useful because what we usually know is the probability of
the effects given the causes, but what we want to know is the probability of the
causes given the effects. For example, we know what percentage of flu patients
have a fever, but what we really want to know is how likely a patient with a
fever is to have the flu. Bayes’ theorem lets us go from one to the other. Its
significance extends far beyond that, however. For Bayesians, this innocent-
looking formula is the F = ma of machine learning, the foundation from which a
vast number of results and applications flow. And whatever the Master
Algorithm is, it must be “just” a computational implementation of Bayes’
theorem. I put just in quotes because implementing Bayes’ theorem on a
computer turns out to be fiendishly hard for all but the simplest problems, for
reasons that we’re about to see.

Bayes’ theorem as a foundation for statistics and machine learning is
bedeviled not just by computational difficulty but also by extreme controversy.
You might be forgiven for wondering why: Isn’t it a straightforward
consequence of the notion of conditional probability, as we saw in the flu
example? Indeed, no one has a problem with the formula itself. The controversy
is in how Bayesians obtain the probabilities that go into it and what those

probabilities mean. For most statisticians, the only legitimate way to estimate
probabilities is by counting how often the corresponding events occur. For
example, the probability of fever is 0.2 because twenty out of one hundred
observed patients had it. This is the “frequentist” interpretation of probability,
and the dominant school of thought in statistics takes its name from it. But notice
that in the sunrise example, and in Laplace’s principle of indifference, we did
something different: we pulled a probability out of thin air. What exactly
justifies assuming a priori that the probability the sun will rise is one-half, or
two-thirds, or whatever? Bayesians’ answer is that a probability is not a
frequency but a subjective degree of belief. Therefore it’s up to you what you
make it, and all that Bayesian inference lets you do is update your prior beliefs
with new evidence to obtain your posterior beliefs (also known as “turning the
Bayesian crank”). Bayesians’ devotion to this idea is near religious, enough to
withstand two hundred years of attacks and counting. And with the appearance
on the stage of computers powerful enough to do Bayesian inference, and the
massive data sets to go with it, they’re beginning to gain the upper hand.

All models are wrong, but some are useful

In reality, a doctor doesn’t diagnose the flu just based on whether you have a
fever; she takes a whole bunch of symptoms into account, including whether you
have a cough, a sore throat, a runny nose, a headache, chills, and so on. So what
we really need to compute is P(flu | fever, cough, sore throat, runny nose,
headache, chills, . . .). By Bayes’ theorem, we know that this is proportional to
P(fever, cough, sore throat, runny nose, headache, chills, . . .| flu). But now we
run into a problem. How are we supposed to estimate this probability? If each
symptom is a Boolean variable (you either have it or you don’t) and the doctor

takes n symptoms into account, a patient could have 2" possible combinations of
symptoms. If we have, say, twenty symptoms and a database of ten thousand
patients, we’ve only seen a small fraction of the roughly one million possible
combinations. Worse still, to accurately estimate the probability of a particular
combination, we need at least tens of observations of it, meaning the database
would need to include tens of millions of patients. Add another ten symptoms,
and we’d need more patients than there are people on Earth. With a hundred
symptoms, even if we were somehow able to magically get the data, there
wouldn’t be enough space on all the hard disks in the world to store all the

probabilities. And if a patient walks in with a combination of symptoms we
haven’t seen before, we won’t know how to diagnose him. We’re face-to-face
with our old foe: the combinatorial explosion.

Therefore we do what we always have to do in life: compromise. We make
simplifying assumptions that whittle the number of probabilities we have to
estimate down to something manageable. A very simple and popular assumption
is that all the effects are independent given the cause. This means that, for
example, having a fever doesn’t change how likely you are to also have a cough,
if we already know you have the flu. Mathematically, this is saying that P(fever,
cough | flu) is just P(fever | flu) x P(cough | flu). Lo and behold: each of these is
easy to estimate from a small number of observations. In fact, we did it for fever
in the previous section, and it would be no different for cough or any other
symptom. The number of observations we need no longer goes up exponentially
with the number of symptoms; in fact, it doesn’t go up at all.

Notice that we’re only saying that fever and cough are independent given
that you have the flu, not overall. Clearly, if we don’t know whether you have
the flu, fever and cough are highly correlated, since you’re much more likely to
have a cough if you already have a fever. P(fever, cough) is not equal to P(fever)
X P(cough). All we’re saying is that, if we know you have the flu, knowing
whether you have a fever gives us no additional information about whether you
have a cough. Likewise, if you don’t know the sun is about to rise and you see
the stars fade, your expectation that the sky will lighten increases; but if you
already know that sunrise is imminent, seeing the stars fade makes no difference.

Notice also that it’s only thanks to Bayes’ theorem that we were able to pull
off this trick. If we wanted to directly estimate P(flu | fever, cough, etc.), without
first turning it into P(fever, cough, etc. | flu) using the theorem, we’d still need
an exponential number of probabilities, one for each combination of symptoms
and flu/not flu.

A learner that uses Bayes’ theorem and assumes the effects are independent
given the cause is called a Naive Bayes classifier. That’s because, well, that’s
such a naive assumption. In reality, having a fever makes having a cough more
likely, even if you already know you have the flu, because (for example) it
makes you more likely to have a bad flu. But machine learning is the art of
making false assumptions and getting away with it. As the statistician George
Box famously put it: “All models are wrong, but some are useful.” An
oversimplified model that you have enough data to estimate is better than a
perfect one that you don’t. It’s astonishing how simultaneously very wrong and

very useful some models can be. The economist Milton Friedman even argued in
a highly influential essay that the best theories are the most oversimplified,
provided their predictions are accurate, because they explain the most with the
least. That seems to me like a bridge too far, but it illustrates that, counter to
Einstein’s dictum, science often progresses by making things as simple as
possible, and then some.

No one is sure who invented the Naive Bayes algorithm. It was mentioned
without attribution in a 1973 pattern recognition textbook, but it only took off in
the 1990s, when researchers noticed that, surprisingly, it was often more
accurate than much more sophisticated learners. I was a graduate student at the
time, and when I belatedly decided to include Naive Bayes in my experiments, I
was shocked to find it did better than all the other algorithms I was comparing,
save one—luckily, the algorithm I was developing for my thesis, or I might not
be here now.

Naive Bayes is now very widely used. For example, it forms the basis of
many spam filters. It all began when David Heckerman, a prominent Bayesian
researcher who is also a medical doctor, had the idea of treating spam as a
disease whose symptoms are the words in the e-mail: Viagra is a symptom, and
so is free, but your best friend’s first name probably signals a legit e-mail. We
can then use Naive Bayes to classify e-mails into spam and nonspam, provided
spammers generate e-mails by picking words at random. That’s a ridiculous
assumption, of course: it would only be true if sentences had no syntax and no
content. But that summer Mehran Sahami, then a Stanford graduate student, tried
it out during an internship at Microsoft Research, and it worked great. When Bill
Gates asked Heckerman how this could be, he pointed out that to identify spam
you don’t need to understand the details of the message; it’s enough to get the
gist of it by seeing which words it contains.

A basic search engine also uses an algorithm quite similar to Naive Bayes to
decide which web pages to return in answer to your query. The main difference
is that, instead of spam/not-spam, it’s trying to predict relevant/not-relevant. The
list of prediction problems Naive Bayes has been applied to is practically
endless. Peter Norvig, director of research at Google, told me at one point that it
was the most widely used learner there, and Google uses machine learning in
every nook and cranny of what it does. It’s not hard to see why Naive Bayes
would be popular among Googlers. Surprising accuracy aside, it scales great;
learning a Naive Bayes classifier is just a matter of counting how many times
each attribute co-occurs with each class and takes barely longer than reading the

data from disk.

You could even use Naive Bayes, tongue-in-cheek, on a much larger scale
than Google’s: to model the whole universe. Indeed, if you believe in an
omnipotent God, then you can model the universe as a vast Naive Bayes
distribution where everything that happens is independent given God’s will. The
catch, of course, is that we can’t read God’s mind, but in Chapter 8 we’ll
investigate how to learn Naive Bayes models even when we don’t know the
classes of the examples.

It might not seem so at first, but Naive Bayes is closely related to the
perceptron algorithm. The perceptron adds weights and Naive Bayes multiplies
probabilities, but if you take a logarithm, the latter reduces to the former. Both
can be seen as generalizations of simple If . . . then . . . rules, where each
antecedent can count more or less toward the conclusion instead of being “all or
none.” This is just one example of the deeper connections among learners that
hint at a Master Algorithm. You may not consciously know Bayes’ theorem
(well, now you do), but in a way every one of the ten billion neurons in your
brain is a tiny instance of it.

Naive Bayes is a good conceptual model of a learner to use when reading the
press: it captures the pairwise correlation between each input and the output,
which is often all that’s needed to understand references to learning algorithms
in news stories. But machine learning is not just pairwise correlations, of course,
any more than the brain is just one neuron. The real action begins when we look
for more complex patterns.

From Eugene Onegin to Siri

In 1913, on the eve of World War I, the Russian mathematician Andrei Markov
published a paper applying probability to, of all things, poetry. In it, he modeled
a classic of Russian literature, Pushkin’s Eugene Onegin, using what we now
call a Markov chain. Rather than assume that each letter was generated at
random independently of the rest, he introduced a bare minimum of sequential
structure: he let the probability of each letter depend on the letter immediately
preceding it. He showed that, for example, vowels and consonants tend to
alternate, so if you see a consonant, the next letter (ignoring punctuation and
white space) is much more likely to be a vowel than it would be if letters were
independent. This may not seem like much, but in the days before computers, it

required spending hours manually counting characters, and Markov’s idea was
quite new. If Vowel; is a Boolean variable that’s true if the ith letter of Eugene

Onegin is a vowel and false if it’s a consonant, we can represent Markov’s
model with a chain-like graph like this, with an arrow between two nodes
indicating a direct dependency between the corresponding variables:

Markov assumed (wrongly but usefully) that the probabilities are the same at
every position in the text. Thus we need to estimate only three probabilities:
P(Vowely = True), P(Vowelj+1 = True | Vowel; = True), and P(Vowelj+1 =

True | Vowel; = False). (Since probabilities sum to one, from these we can
immediately obtain P(Vowel; = False), etc.) As with Naive Bayes, we can have

as many variables as we want without the number of probabilities we need to
estimate going through the roof, but now the variables actually depend on each
other.

If we measure not just the probability of vowels versus consonants, but the
probability of each letter in the alphabet following each other, we can have fun
generating new texts with the same statistics as Onegin: choose the first letter,
then choose the second based on the first, and so on. The result is complete
gibberish, of course, but if we let each letter depend on several previous letters
instead of just one, it starts to sound more like the ramblings of a drunkard,
locally coherent even if globally meaningless. Still not enough to pass the Turing
test, but models like this are a key component of machine-translation systems,
like Google Translate, which lets you see the whole web in English (or almost),
regardless of the language the pages were originally written in.

PageRank, the algorithm that gave rise to Google, is itself a Markov chain.
Larry Page’s idea was that web pages with many incoming links are probably
more important than pages with few, and links from important pages should
themselves count for more. This sets up an infinite regress, but we can handle it
with a Markov chain. Imagine a web surfer going from page to page by
randomly following links: the states of this Markov chain are web pages instead
of characters, making it a vastly larger problem, but the math is the same. A
page’s score is then the fraction of the time the surfer spends on it, or
equivalently, his probability of landing on the page after wandering around for a

long time.

Markov chains turn up everywhere and are one of the most intensively
studied topics in mathematics, but they’re still a very limited kind of
probabilistic model. We can go one step further with a model like this:

The states form a Markov chain, as before, but we don’t get to see them; we
have to infer them from the observations. This is called a hidden Markov model,
or HMM for short. (Slightly misleading, because it’s the states that are hidden,
not the model.) HMMs are at the heart of speech-recognition systems like Siri.
In speech recognition, the hidden states are written words, the observations are
the sounds spoken to Siri, and the goal is to infer the words from the sounds. The
model has two components: the probability of the next word given the current
one, as in a Markov chain, and the probability of hearing various sounds given
the word being pronounced. (How exactly to do the inference is a fascinating
problem that we’ll turn to after the next section.)

Siri aside, you use an HMM every time you talk on your cell phone. That’s
because your words get sent over the air as a stream of bits, and the bits get
corrupted in transit. The HMM then figures out the intended bits (hidden state)
from the ones received (observations), which it should be able to do as long as
not too many bits got mangled.

HMMs are also a favorite tool of computational biologists. A protein is a
sequence of amino acids, and DNA is a sequence of bases. If we want to predict,
for example, how a protein will fold into a 3-D shape, we can treat the amino
acids as the observations and the type of fold at each point as the hidden state.
Similarly, we can use an HMM to identify the sites in DNA where gene
transcription is initiated and many other properties.

If the states and observations are continuous variables instead of discrete
ones, the HMM becomes what’s known as a Kalman filter. Economists use
Kalman filters to remove noise from time series of quantities like GDP, inflation,
and unemployment. The “true” GDP values are the hidden states; at each time

step, the true value should be similar to the observed one, but also to the
previous true value, since the economy seldom makes abrupt jumps. The
Kalman filter trades off these two, yielding a smoother curve that still accords
with the observations. When a missile cruises to its target, it’s a Kalman filter
that keeps it on track. Without it, there would have been no man on the moon.

Everything is connected, but not directly

HMMs are good for modeling sequences of all kinds, but they’re still a far cry
from the flexibility of the symbolists’ If . . . then . . . rules, where anything can
appear as an antecedent, and a rule’s consequent can in turn be an antecedent in
any downstream rule. If we allow such an arbitrary structure in practice,
however, the number of probabilities we need to learn blows up. For a long time
no one knew how to square this circle, and researchers resorted to ad-hoc
schemes, like attaching confidence estimates to rules and somehow combining
them. If A implies B with confidence 0.8 and B implies C with confidence 0.7,
then perhaps A implies C with confidence 0.8 x 0.7.

The problem with these schemes is that they can go badly awry. From the
two perfectly reasonable rules If the sprinkler is on, then the grass is wet and If
the grass is wet, then it rained, I can infer the nonsensical rule If the sprinkler is
on, then it rained. A more insidious problem is that with confidence-rated rules
we’re prone to double-counting evidence. Suppose you read in the New York
Times that aliens have landed. Maybe it’s a prank, even though it’s not April 1.
But now you see the same headline in the Wall Street Journal, USA Today, and
the Washington Post. You start to panic, like the listeners to Orson Welles’s
infamous War of the Worlds radio broadcast who didn’t realize it was a
dramatization. If, however, you check the fine print and notice that all four
newspapers got the story from the Associated Press, you go back to suspecting
it’s a prank, this time by an AP reporter. Rule systems have no way of dealing
with this, and neither does Naive Bayes. If it uses features like Reported in the
New York Times as predictors that a news story is true, all it can do is add
Reported by AP, which only makes things worse.

The breakthrough came in the early 1980s, when Judea Pearl, a professor of
computer science at the University of California, Los Angeles, invented a new
representation: Bayesian networks. Pearl is one of the most distinguished
computer scientists in the world, his methods having swept through machine

learning, Al, and many other fields. He won the Turing Award, the Nobel Prize
of computer science, in 2012.

Pearl realized that it’s OK to have a complex network of dependencies
among random variables, provided each variable depends directly on only a few
others. We can represent these dependencies with a graph like the ones we saw
for Markov chains and HMMs, except now the graph can have any structure (as
long as the arrows don’t form closed loops). One of Pearl’s favorite examples is
burglar alarms. The alarm at your house should go off if a burglar attempts to
break in, but it could also be triggered by an earthquake. (In Los Angeles, where
Pearl lives, earthquakes are almost as frequent as burglaries.) If you’re working
late one night and your neighbor Bob calls to say he just heard your alarm go
off, but your neighbor Claire doesn’t, should you call the police? Here’s the
graph of dependencies:

Burglary Bob calls

7

Earthquake

If there’s an arrow from one node to another in the graph, we say that the first
node is a parent of the second. So Alarm’s parents are Burglary and Earthquake,
and Alarm is the sole parent of Bob calls and Claire calls. A Bayesian network is
a graph of dependencies like this, together with a table for each variable, giving
its probability for each combination of values of its parents. For Burglary and
Earthquake we only need one probability each, since they have no parents. For
Alarm we need four: the probability that it goes off even if there’s no burglary or
earthquake, the probability that it goes off if there’s a burglary and no
earthquake, and so on. For Bob calls we need two probabilities (given alarm and
given no alarm), and similarly for Claire.

Here’s the crucial point: Bob calling depends on Burglary and Earthquake,
but only through Alarm. Bob’s call is conditionally independent of Burglary and
Earthquake given Alarm, and so is Claire’s. If the alarm doesn’t go off, your
neighbors sleep soundly, and the burglar proceeds undisturbed. Also, Bob and
Claire are independent given Alarm. Without this independence structure, you’d

need to learn 2° = 32 probabilities, one for each possible state of the five
variables. (Or 31, if you’re a stickler for details, since the last one can be left
implicit.) With the conditional independencies, all you needis 1 +1+4+ 2 + 2
= 10, a savings of 68 percent. And that’s just in this tiny example; with hundreds
or thousands of variables, the savings would be very close to 100 percent.

The first law of ecology, according to biologist Barry Commoner, is that
everything is connected to everything else. That may be true, but it would also
make the world impossible to understand, if not for the saving grace of
conditional independence: everything is connected, but only indirectly. In order
to affect me, something that happens a mile away must first affect something in
my neighborhood, even if only through the propagation of light. As one wag put
it, space is the reason everything doesn’t happen to you. Put another way, the
structure of space is an instance of conditional independence.

In the burglary example, the full table of thirty-two probabilities is never
represented explicitly, but it’s implicit in the collection of smaller tables and
graph structure. To obtain P(Burglary, Earthquake, Alarm, Bob calls, Claire
calls), all T have to do is multiply P(Burglary), P(Earthquake), P(Alarm |
Burglary, Earthquake), P(Bob calls | Alarm), and P(Claire calls | Alarm). 1t’s
the same in any Bayesian network: to obtain the probability of a complete state,
just multiply the probabilities from the corresponding lines in the individual
variables’ tables. So, provided the conditional independencies hold, no
information is lost by switching to the more compact representation. And in this
way we can easily compute the probabilities of extremely unusual states,
including states that were never observed before. Bayesian networks give the lie
to the common misconception that machine learning can’t predict very rare
events, or “black swans,” as Nassim Taleb calls them.

In retrospect, we can see that Naive Bayes, Markov chains, and HMMs are
all special cases of Bayesian networks. The structure of Naive Bayes is:

Markov chains encode the assumption that the future is conditionally
independent of the past given the present. HMMs assume in addition that each

observation depends only on the corresponding state. Bayesian networks are for
Bayesians what logic is for symbolists: a lingua franca that allows us to
elegantly encode a dizzying variety of situations and devise algorithms that work
uniformly in all of them.

We can think of a Bayesian network as a “generative model,” a recipe for
probabilistically generating a state of the world: first decide independently
whether there’s a burglary and/or an earthquake, then based on that decide
whether the alarm goes off, and then based on that whether Bob and Claire call.
A Bayesian network tells a story: A happened, and it led to B; at the same time,
C also happened, and B and C together caused D. To compute the probability of
a particular story, we just multiply the probabilities of all of its different strands.

One of the most exciting applications of Bayesian networks is modeling how
genes regulate each other in living cells. Billions of dollars have been spent
trying to discover pairwise correlations between individual genes and specific
diseases, but the yield has been disappointingly low. In retrospect, this is not so
surprising: a cell’s behavior is the result of complex interactions among genes
and the environment, and a single gene has limited predictive power. But with
Bayesian networks, we can uncover these interactions, provided we have the
requisite data, and with the spread of DNA microarrays, we increasingly do.

After pioneering the application of machine learning to spam filtering, David
Heckerman turned to using Bayesian networks in the fight against AIDS. The
AIDS virus is a tough adversary because it mutates rapidly, making it difficult
for any one vaccine or drug to pin it down for long. Heckerman noticed that this
is the same cat-and-mouse game that spam filters play with spam and decided to
apply a lesson he had learned there: attack the weakest link. In the case of spam,
weak links include the URLs you have to use to take payment from the
customer. In the case of HIV, they’re small regions of the virus protein that can’t
change without hurting the virus. If he could train the immune system to
recognize these regions and attack the cells displaying them, he just might have
an AIDS vaccine. Heckerman and coworkers used a Bayesian network to help
identify the vulnerable regions and developed a vaccine delivery mechanism that
could teach the immune system to attack just those regions. The delivery
mechanism worked in mice, and clinical trials are now in preparation.

It often happens that, even after we take all conditional independences into
account, some nodes in a Bayesian network still have too many parents. Some
networks are so dense with arrows that when we print them, the page turns solid
black. (The physicist Mark Newman calls them “ridiculograms.”) A doctor

needs to simultaneously diagnose all the possible diseases a patient could have,
not just one, and every disease is a parent of many different symptoms. A fever
could be caused by any number of conditions besides the flu, but it’s hopeless to
try to predict its probability given every possible combination of conditions. All
is not lost. Instead of a table specifying the node’s conditional probability for
every state of its parents, we can learn a simpler distribution. The most popular
choice is a probabilistic version of the logical OR operation: any cause alone can
provoke a fever, but each cause has a certain probability of failing to do so, even
if it’s usually sufficient. Heckerman and others have learned Bayesian networks
that diagnose hundreds of infectious diseases in this way. Google uses a giant
Bayesian network of this type in its AdSense system for automatically choosing
ads to place on web pages. The network relates a million content variables to
each other and to twelve million words and phrases via over three hundred
million arrows, all learned from a hundred billion text snippets and search
queries.

On a lighter note, Microsoft’s Xbox Live uses a Bayesian network to rate
players and match players of similar skill. The outcome of a game is a
probabilistic function of the opponents’ skill levels, and using Bayes’ theorem
we can infer a player’s skill from the outcomes of his games.

The inference problem

There’s a big snag in all of this, unfortunately. Just because a Bayesian network
lets us compactly represent a probability distribution doesn’t mean we can also
reason efficiently with it. Suppose you want to compute P(Burglary | Bob called,
Claire didn’t). By Bayes’ theorem, you know this is just P(Burglary) P(Bob
called, Claire didn’t | Burglary) / P(Bob called, Claire didn’t), or equivalently,
P(Burglary, Bob called, Claire didn’t) / P(Bob called, Claire didn’t). If you had
the full table with the probabilities of all states, you could obtain both of these
probabilities by adding up the corresponding lines in the table. For example,
P(Bob called, Claire didn’t) is the sum of the probabilities of all the lines where
Bob calls and Claire doesn’t. But the Bayesian network doesn’t give you the full
table. You could always construct it from the individual tables, but that takes
exponential time and space. What we really want is to compute P(Burglary | Bob
called, Claire didn’t) without building the full table. That, in a nutshell, is the
problem of inference in Bayesian networks.

In many cases we can do this and avoid the exponential blowup. Suppose
you’re leading a platoon in single file through enemy territory in the dead of
night, and you want to make sure that all your soldiers are still with you. You
could stop and count them yourself, but that wastes too much time. A cleverer
solution is to just ask the first soldier behind you: “How many soldiers are
behind you?” Each soldier asks the next the same question, until the last one
says “None.” The next-to-last soldier can now say “One,” and so on all the way
back to the first soldier, with each soldier adding one to the number of soldiers
behind him. Now you know how many soldiers are still with you, and you didn’t
even have to stop.

Siri uses the same idea to compute the probability that you just said, “Call
the police” from the sounds it picked up from the microphone. Think of “Call
the police” as a platoon of words marching across the page in single file. Police
wants to know its probability, but for that it needs to know the probability of the;
and the in turn needs to know the probability of call. So call computes its
probability and passes it on to the, which does the same and passes the result to
police. Now police knows its probability, duly influenced by every word in the
sentence, but we never had to construct the full table of eight possibilities (the
first word is call or isn’t, the second is the or isn’t, and the third is police or
isn’t). In reality, Siri considers all words that could appear in each position, not
just whether the first word is call or not and so on, but the algorithm is the same.
Perhaps Siri thinks, based on the sounds, that the first word was either call or
tell, the second was the or her, and the third was police or please. Individually,
perhaps the most likely words are call, the, and please. But that forms the
nonsensical sentence “Call the please,” so taking the other words into account,
Siri concludes that the sentence is really “Call the police.” It makes the call, and
with luck the police get to your house in time to catch the burglar.

The same idea still works if the graph is a tree instead of a chain. If instead
of a platoon you’re in command of a whole army, you can ask each of your
company commanders how many soldiers are behind him and add up their
answers. Each company commander in turn asks each of his platoon
commanders, and so on. But if the graph forms loops, you’re in trouble. If
there’s a liaison officer who’s a member of two platoons, he gets counted twice;
in fact, everyone behind him gets counted twice. This is what happens in the
“aliens have landed” scenario, if you want to compute, say, the probability of
panic:

Times
reports it
Journal
reports it

One solution is to combine The Times reports it and The Journal reports it into a
single megavariable with four values: YesYes if they both do, YesNo if the Times
reports a landing and the Journal doesn’t, and so on. This turns the graph into a
chain of three variables, and all is well. However, every time you add a news
source, the number of values of the megavariable doubles. If instead of two news

Aliens
land

sources you have fifty, the megavariable has 250 values. So this method can
only get you so far, and no other known method does any better.

The problem is worse than it seems, because Bayesian networks in effect
have “invisible” arrows to go along with the visible ones. Burglary and
Earthquake are a priori independent, but the alarm going off entangles them: the
alarm makes you suspect a burglary, but if now you hear on the radio that there’s
been an earthquake, you assume that’s what caused the alarm. The earthquake
has explained away the alarm, making a burglary less likely, and the two are
therefore dependent. In a Bayesian network, all parents of the same variable are
interdependent in this way, and this in turn introduces further dependencies,
making the resulting graph often much denser than the original one.

The crucial question for inference is whether you can make the filled-in
graph “look like a tree” without the trunk getting too thick. If the megavariable
in the trunk has too many possible values, the tree grows out of control until it
covers the whole planet, like the baobabs in The Little Prince. In the tree of life,
each species is a branch, but inside each branch is a graph, with each creature
having two parents, four grandparents, some number of offspring, and so on. The
“thickness” of a branch is the size of the species’ population. When the branches
are too thick, our only choice is to resort to approximate inference.

One solution, left as an exercise by Pearl in his book on Bayesian networks,
is to pretend the graph has no loops and just keep propagating probabilities back
and forth until they converge. This is known as loopy belief propagation, both
because it works on graphs with loops and because it’s a crazy idea.

Surprisingly, it turns out to work quite well in many cases. For instance, it’s a
state-of-the art method for wireless communication, with the random variables
being the bits in the message, encoded in a clever way. But loopy belief
propagation can also converge to the wrong answers or oscillate forever.
Another solution, which originated in physics but was imported into machine
learning and greatly extended by Michael Jordan and others, is to approximate
an intractable distribution with a tractable one and optimize the latter’s
parameters to make it as close as possible to the former.

The most popular option, however, is to drown our sorrows in alcohol, get
punch drunk, and stumble around all night. The technical term for this is Markov
chain Monte Carlo, or MCMC for short. The “Monte Carlo” part is because the
method involves chance, like a visit to the eponymous casino, and the “Markov
chain” part is because it involves taking a sequence of steps, each of which
depends only on the previous one. The idea in MCMC is to do a random walk,
like the proverbial drunkard, jumping from state to state of the network in such a
way that, in the long run, the number of times each state is visited is proportional
to its probability. We can then estimate the probability of a burglary, say, as the
fraction of times we visited a state where there was a burglary. A “well-
behaved” Markov chain converges to a stable distribution, so after a while it
always gives approximately the same answers. For example, when you shuffle a
deck of cards, after a while all card orders are equally likely, no matter the initial
order; so you know that if there are n possible orders, the probability of each one
is 1/n. The trick in MCMC is to design a Markov chain that converges to the
distribution of our Bayesian network. One easy option is to repeatedly cycle
through the variables, sampling each one according to its conditional probability
given the state of its neighbors. People often talk about MCMC as a kind of
simulation, but it’s not: the Markov chain does not simulate any real process;
rather, we concocted it to efficiently generate samples from a Bayesian network,
which is itself not a sequential model.

The origins of MCMC go all the way back to the Manhattan Project, when
physicists needed to estimate the probability that neutrons would collide with
atoms and set off a chain reaction. But in more recent decades, it has sparked
such a revolution that it’s often considered one of the most important algorithms
of all time. MCMC is good not just for computing probabilities but for
integrating any function. Without it, scientists were limited to functions they
could integrate analytically, or to well-behaved, low-dimensional integrals they
could approximate as a series of trapezoids. With MCMC, they’re free to build

complex models, knowing the computer will do the heavy lifting. Bayesians, for
one, probably have MCMC to thank for the rising popularity of their methods
more than anything else.

On the downside, MCMC is often excruciatingly slow to converge, or fools
you by looking like it’s converged when it hasn’t. Real probability distributions
are usually very peaked, with vast wastelands of minuscule probability
punctuated by sudden Everests. The Markov chain then converges to the nearest
peak and stays there, leading to very biased probability estimates. It’s as if the
drunkard followed the scent of alcohol to the nearest tavern and stayed there all
night, instead of wandering all around the city like we wanted him to. On the
other hand, if instead of using a Markov chain we just generated independent
samples, like simpler Monte Carlo methods do, we’d have no scent to follow and
probably wouldn’t even find that first tavern; it would be like throwing darts at a
map of the city, hoping they land smack dab on the pubs.

Inference in Bayesian networks is not limited to computing probabilities. It
also includes finding the most probable explanation for the evidence, such as the
disease that best explains the symptoms or the words that best explain the sounds
Siri heard. This is not the same as just picking the most probable word at each
step, because words that are individually likely given their sounds may be
unlikely to occur together, as in the “Call the please” example. However, similar
kinds of algorithms also work for this task (and they are, in fact, what most
speech recognizers use). Most importantly, inference includes making the best
decisions, guided not just by the probabilities of different outcomes but also by
the corresponding costs (or utilities, to use the technical term). The cost of
ignoring an e-mail from your boss asking you to do something by tomorrow is
much greater than the cost of seeing a piece of spam, so often it’s better to let an
e-mail through even if it does seem fairly likely to be spam.

Driverless cars and other robots are a prime example of probabilistic
inference in action. As the car drives around, it simultaneously builds up a map
of the territory and figures out its location on it with increasing certainty.
According to a recent study, London taxi drivers grow a larger posterior
hippocampus, a brain region involved in memory and map making, as they learn
the layout of the city. Perhaps they use similar probabilistic inference
algorithms, with the notable difference that in the case of humans, drinking
doesn’t seem to help.

Learning the Bayesian way

Now that we know how to (more or less) solve the inference problem, we’re
ready to learn Bayesian networks from data, because for Bayesians learning is
just another kind of probabilistic inference. All you have to do is apply Bayes’
theorem with the hypotheses as the possible causes and the data as the observed
effect:

P(hypothesis | data) = P(hypothesis) x P(data | hypothesis) / P(data)

The hypothesis can be as complex as a whole Bayesian network, or as simple
as the probability that a coin will come up heads. In the latter case, the data is
just the outcome of a series of coin flips. If, say, we obtain seventy heads in a
hundred flips, a frequentist would estimate the probability of heads as 0.7. This
is justified by the so-called maximum likelihood principle: of all the possible
probabilities of heads, 0.7 is the one under which seeing seventy heads in a
hundred flips is most likely. The likelihood of a hypothesis is P(data |
hypothesis), and the principle says we should pick the hypothesis that maximizes
it. Bayesians do something more subtle, though. They point out that we never
know for sure which hypothesis is the true one, and so we shouldn’t just pick
one hypothesis, like a value of 0.7 for the probability of heads; rather, we should
compute the posterior probability of every possible hypothesis and entertain all
of them when making predictions. The sum of the probabilities of all the
hypotheses must be one, so if one becomes more likely, the others become less.
For a Bayesian, in fact, there is no such thing as the truth; you have a prior
distribution over hypotheses, after seeing the data it becomes the posterior
distribution, as given by Bayes’ theorem, and that’s all.

This is a radical departure from the way science is usually done. It’s like
saying, “Actually, neither Copernicus nor Ptolemy was right; let’s just predict
the planets’ future trajectories assuming Earth goes round the sun and vice versa
and average the results.”

Of course, it’s a weighted average, the weight of a hypothesis being its
posterior probability, so a hypothesis that explains the data better will count for
more. Still, as the joke goes, being Bayesian means never having to say you’re
certain.

Needless to say, carrying around a multitude of hypotheses instead of just
one is a huge pain. In the case of learning a Bayesian network, we’re supposed

to make predictions by averaging over all possible Bayesian networks, including
all possible graph structures and all possible parameter values for each structure.
In some cases, we can compute the average over parameters in closed form, but
with varying structures we’re out of luck. We have to resort to, for example,
doing MCMC over the space of networks, jumping from one possible network to
another as the Markov chain progresses. Combine all this complexity and
computational cost with Bayesians’ controversial notion that there’s really no
such thing as objective reality, and it’s not hard to see why frequentism has
dominated science for the last century.

There’s a saving grace, however, and some major reasons to prefer the
Bayesian way. The saving grace is that, most of the time, almost all hypotheses
wind up with a tiny posterior probability, and we can safely ignore them. In fact,
just considering the single most probable hypothesis is usually a very good
approximation. Suppose our prior distribution for the coin flip problem is that all
probabilities of heads are equally likely. The effect of seeing the outcomes of
successive flips is to concentrate the distribution more and more on the
hypotheses that best agree with the data. For example, if h ranges over the
possible probabilities of heads and a coin comes out heads 70 percent of the
time, we’ll see something like this:

P(h) P(h | 10 flips) P(h | 20 flips)
A A A

0.7 h 0.7 h 0.7 h

The posterior after each flip becomes the prior for the next flip, and flip by flip,
we become increasingly certain that h = 0.7. If we just take the single most
probable hypothesis (h = 0.7 in this case), the Bayesian approach becomes quite
similar to the frequentist one, but with one crucial difference: Bayesians take the
prior P(hypothesis) into account, not just the likelihood P(data | hypothesis).
(The data prior P(data) can be ignored because it’s the same for all hypotheses
and therefore doesn’t affect the choice of winner.) If we’re willing to assume
that all hypotheses are equally likely a priori, the Bayesian approach now
reduces to the maximum likelihood principle. So Bayesians can say to

frequentists: “See, what you do is a special case of what we do, but at least we
make our assumptions explicit.” And if the hypotheses are not equally likely a
priori, maximum likelihood’s implicit assumption that they are leads to the
wrong answers.

This might seem like a theoretical discussion, but it has tremendous practical
consequences. If we’ve seen only one coin flip and it came out heads, maximum
likelihood says that the probability of heads must be one. This could be wildly
inaccurate and leaves us woefully unprepared for the coin coming up tails. Once
we’ve seen a lot of flips, the estimate becomes more reliable, but in many
problems, we never see enough flips, no matter how big the data. Suppose the
word supercalifragilisticexpialidocious never appears in a spam e-mail in our
training data and appears once in an e-mail talking about Mary Poppins. A Naive
Bayes spam filter with maximum likelihood probability estimates will then
decide that an e-mail containing it cannot be spam, regardless of whether every
other word in the e-mail screams “Spam! Spam!” In contrast, a Bayesian would
give the word a low but nonzero probability of appearing in spam, allowing the
other words to override it.

The problem only gets worse if we try to learn the structure of a Bayesian
network as well as its parameters. We can do this by hill climbing, starting with
an empty network (no arrows), adding the arrow that most increases likelihood,
and so on until no arrow causes an improvement. Unfortunately, this quickly
leads to massive overfitting, with a network that assigns zero probability to all
states not appearing in the data. Bayesians can do something much more
interesting. They can use the prior distribution to encode experts’ knowledge
about the problem—their answer to Hume’s question. For example, we can
design an initial Bayesian network for medical diagnosis by interviewing
doctors, asking them which symptoms they think depend on which diseases, and
adding the corresponding arrows. This is the “prior network,” and the prior
distribution can penalize alternative networks by the number of arrows that they
add or remove from it. But doctors are fallible, so we’ll let the data override
them: if the increase in likelihood from adding an arrow outweighs the penalty,
we do it.

Of course, frequentists are aware of this issue, and their answer is to, for
example, multiply the likelihood by a factor that penalizes more complex
networks. But at this point frequentism and Bayesianism have become
indistinguishable, and whether you call the scoring function “penalized
likelihood” or “posterior probability” is really just a matter of taste.

Despite the convergence of frequentist and Bayesian thinking on some
issues, there remains the philosophical difference about the meaning of
probability. Viewing it as subjective makes many scientists queasy, but it also
enables many otherwise-forbidden uses. If you’re a frequentist, you can only
estimate probabilities of events that can occur more than once. So a question like
“What is the probability that Hillary Clinton will beat Jeb Bush in the next
presidential election?” is unanswerable, because there’s never been an election
pitting them against each other. But for a Bayesian, a probability is a subjective
degree of belief, so he’s free to make an educated guess, and the inference
calculus keeps all his guesses consistent.

The Bayesian method is not just applicable to learning Bayesian networks
and their special cases. (Conversely, despite their name, Bayesian networks
aren’t necessarily Bayesian: frequentists can learn them, too, as we just saw.)
We can put a prior distribution on any class of hypotheses—sets of rules, neural
networks, programs—and then update it with the hypotheses’ likelihood given
the data. Bayesians’ view is that it’s up to you what representation you choose,
but then you have to learn it using Bayes’ theorem. In the 1990s, they mounted a
spectacular takeover of the Conference on Neural Information Processing
Systems (NIPS for short), the main venue for connectionist research. The
ringleaders (so to speak) were David MacKay, Radford Neal, and Michael
Jordan. MacKay, a Brit who was a student of John Hopfield’s at Caltech and
later became chief scientific advisor to the UK’s Department of Energy, showed
how to learn multilayer perceptrons the Bayesian way. Neal introduced the
connectionists to MCMC, and Jordan introduced them to variational inference.
Finally, they pointed out that in the limit you could “integrate out” the neurons
in a multilayer perceptron, leaving a type of Bayesian model that made no
reference to them. Before long, the word neural in the title of a paper submitted
to NIPS became a good predictor of rejection. Some researchers joked that the
conference should change its name to BIPS, for Bayesian Information
Processing Systems.

Markov weighs the evidence

But something funny happened on the way to world domination. Researchers
using Bayesian models kept noticing that you got better results by tweaking the
probabilities in illegal ways. For example, raising P(words) to some power in

speech recognizers improved accuracy, but then it wasn’t Bayes’ theorem any
more. What was going on? The culprit, it turns out, was the false independence
assumptions that generative models make. The simplified graph structure makes
the models learnable and is worth keeping, but then we’re better off just learning
the best parameters we can for the task at hand, irrespective of whether they’re
probabilities. The real strength of, say, Naive Bayes is that it provides a small,
informative set of features from which to predict the class and a fast, robust way
to learn the corresponding parameters. In a spam filter, each feature is the
occurrence of a particular word in spam, and the corresponding parameter is how
often it occurs; and similarly for nonspam. Viewed in this way, Naive Bayes can
be optimal, in the sense of making the best predictions possible, even in many
cases where its independence assumptions are wildly violated. When I realized
this and published a paper about it in 1996, people’s suspicion of Naive Bayes
melted away, helping it to take off. But it was also a step on the way to a
different kind of model, which in the last two decades has increasingly replaced
Bayesian networks in machine learning: Markov networks.

A Markov network is a set of features and corresponding weights, which
together define a probability distribution. A feature can be as simple as This is a
ballad or as elaborate as This is a ballad by a hip-hop artist, with a saxophone
riff and a descending chord progression. Pandora uses a large set of features,
which it calls the Music Genome Project, to select songs to play for you.
Suppose we plug them into a Markov network. If you like ballads, the weight of
the corresponding feature goes up, and you’re more likely to hear ballads when
you turn on Pandora. If you also like songs by hip-hop artists, that feature’s
weight also goes up. The songs you’re most likely to hear are now ones that have
both features, namely ballads by hip-hop artists. If you don’t like ballads or hip-
hop artists per se, but only enjoy them in combination, the more elaborate
feature Ballad by a hip-hop artist is what you need. Pandora’s features are
handcrafted, but in Markov networks we can also learn features using hill
climbing, similar to rule induction. Either way, gradient descent is a good way to
learn the weights.

Like Bayesian networks, Markov networks can be represented by graphs, but
they have undirected arcs instead of arrows. Two variables are connected,
meaning they depend directly on each other, if they appear together in some
feature, like Ballad and By a hip-hop artist in Ballad by a hip-hop artist.

Markov networks are a staple in many areas, such as computer vision. For
instance, a driverless car needs to segment each image it sees into road, sky, and

countryside. One option is to label each pixel as one of the three according to its
color, but this is not nearly good enough. Images are very noisy and variable,
and the car will hallucinate rocks strewn all over the roadway and patches of
road in the sky. We know, however, that nearby pixels in an image are usually
part of the same object, and we can introduce a corresponding set of features: for
each pair of neighboring pixels, the feature is true if they belong to the same
object, and false otherwise. Now images with large, contiguous blocks of road
and sky are much more likely than images without, and the car goes straight
instead of continually swerving left and right to avoid imaginary rocks.

Markov networks can be trained to maximize either the likelihood of the
whole data or the conditional likelihood of what we want to predict given what
we know. For Siri, the likelihood of the whole data is P(words, sounds), and the
conditional likelihood we’re interested in is P(words | sounds). By optimizing
the latter, we can ignore P(sounds), which is only a distraction from our goal.
And since we ignore it, it can be arbitrarily complex. This is much better than
HMMs’ unrealistic assumption that sounds depend solely on the corresponding
words, without any influence from the surroundings. In fact, if all Siri cares
about is figuring out which words you just spoke, perhaps it doesn’t even need to
worry about probabilities; it just needs to make sure the correct words score
higher than incorrect ones when it tots up the weights of their features—ideally a
lot higher, just to be safe.

Analogizers took this line of reasoning to its logical conclusion, as we’ll see
in the next chapter. In the first decade of the new millennium, they in turn took
over NIPS. Now the connectionists dominate once more, under the banner of
deep learning. Some say that research goes in cycles, but it’s more like a spiral,
with loops winding around the direction of progress. In machine learning, the
spiral converges to the Master Algorithm.

Logic and probability: The star-crossed couple

You’d think that Bayesians and symbolists would get along great, given that
they both believe in a first-principles approach to learning, rather than a nature-
inspired one. Far from it. Symbolists don’t like probabilities and tell jokes like
“How many Bayesians does it take to change a lightbulb? They’re not sure.
Come to think of it, they’re not sure the lightbulb is burned out.” More seriously,
symbolists point to the high price we pay for probability. Inference suddenly

becomes a lot more expensive, all those numbers are hard to understand, we
have to deal with priors, and hordes of zombie hypotheses chase us around
forever. The ability to compose pieces of knowledge on the fly, so dear to
symbolists, is gone. Worst of all, we don’t know how to put probability
distributions on many of the things we need to learn. A Bayesian network is a
distribution over a vector of variables, but what about distributions over
networks, databases, knowledge bases, languages, plans, and computer
programs, to name a few? All of these are easily handled in logic, and an
algorithm that can’t learn them is clearly not the Master Algorithm.

Bayesians, in turn, point to the brittleness of logic. If I have a rule like Birds
fly, a world with even one flightless bird is impossible. If I try to patch things by
adding exceptions, such as Birds fly, unless they’re penguins, I’ll never be done.
(What about ostriches? Birds in cages? Dead birds? Birds with broken wings?
Soaked wings?) A doctor diagnoses you with cancer, and you decide to get a
second opinion. If the second doctor disagrees, you’re stuck. You can’t weigh
the two opinions; you just have to believe them both. And then a catastrophe
happens: pigs fly, perpetual motion is possible, and Earth doesn’t exist—because
in logic everything can be inferred from a contradiction. Furthermore, if
knowledge is learned from data, I can never be sure it’s true. Why do symbolists
pretend otherwise? Surely Hume would frown on such insouciance.

Bayesians and symbolists agree that prior assumptions are inevitable, but
they differ in the kinds of prior knowledge they allow. For Bayesians,
knowledge goes in the prior distribution over the structure and parameters of the
model. In principle, the parameter prior could be anything we please, but
ironically, Bayesians tend to choose uninformative priors (like assigning the
same probability to all hypotheses) because they’re easier to compute with. In
any case, humans are not very good at estimating probabilities. For structure,
Bayesian networks provide an intuitive way to incorporate knowledge: draw an
arrow from A to B if you think that A directly causes B. But symbolists are
much more flexible: you can provide as prior knowledge to your learner
anything you can encode in logic, and practically anything can be encoded in
logic—provided it’s black and white.

Clearly, we need both logic and probability. Curing cancer is a good
example. A Bayesian network can model a single aspect of how cells function,
like gene regulation or protein folding, but only logic can put all the pieces
together into a coherent picture. On the other hand, logic can’t deal with
incomplete or noisy information, which is pervasive in experimental biology, but

Bayesian networks can handle it with aplomb.

Bayesian learning works on a single table of data, where each column
represents a variable (for example, the expression level of one gene) and each
row represents an instance (for example, a single microarray experiment, with
each gene’s observed expression level). It’s OK if the table has “holes” and
measurement errors because we can use probabilistic inference to fill in the holes
and average over the errors. But if we have more than one table, Bayesian
learning is stuck. It doesn’t know how to, for example, combine gene expression
data with data about which DNA segments get translated into proteins, and how
in turn the three-dimensional shapes of those proteins cause them to lock on to
different parts of the DNA molecule, affecting the expression of other genes. In
logic, we can easily write rules relating all of these aspects, and learn them from
the relevant combinations of tables—but only provided the tables have no holes
Or errors.

Combining connectionism and evolutionism was fairly easy: just evolve the
network structure and learn the parameters by backpropagation. But unifying
logic and probability is a much harder problem. Attempts to do it go all the way
back to Leibniz, who was a pioneer of both. Some of the best philosophers and
mathematicians of the nineteenth and twentieth centuries, like George Boole and
Rudolf Carnap, worked hard on it but ultimately didn’t get very far. More
recently, computer scientists and Al researchers have joined the fray. But as the
millennium turned around, the best we had were partial successes, like adding
some logical constructs to Bayesian networks. Most experts believed that
unifying logic and probability was impossible. The prospects for a Master
Algorithm did not look good, particularly since the existing evolutionary and
connectionist algorithms couldn’t deal with incomplete information or multiple
data sets, either.

Luckily, we have since cracked the problem, and the Master Algorithm now
looks that much closer. We’ll see how we did it in Chapter 9 and take it from
there. But first we need to gather a very important, still-missing piece of the
puzzle: how to learn from very little data. That might seem unnecessary in these
days of data deluge, but the truth is that we often find ourselves with reams of
data about some parts of the problem we want to solve and almost none about
others. This is where one of the most important ideas in machine learning comes
in: analogy. All of the tribes we’ve met so far have one thing in common: they
learn an explicit model of the phenomenon under consideration, whether it’s a
set of rules, a multilayer perceptron, a genetic program, or a Bayesian network.

When they don’t have enough data to do that, they’re stumped. But analogizers
can learn from as little as one example because they never fo